Skip to main content
Log in

The Bifurcation Approach to Hyperbolic Geometry

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The Thomas precession of relativity physics gives rise to important isometries in hyperbolic geometry that expose analogies with Euclidean geometry. These, in turn, suggest our bifurcation approach to hyperbolic geometry, according to which Euclidean geometry bifurcates into two mutually dual branches of hyperbolic geometry in its transition to non-Euclidean geometry. One of the two resulting branches turns out to be the standard hyperbolic geometry of Bolyai and Lobachevsky. The corresponding bifurcation of Newtonian mechanics in the transition to Einsteinian mechanics indicates that there are two, mutually dual, kinds of uniform accelerations. Furthermore, while current hyperbolic geometry “does not use the notion of vector at all” (I. M. Yaglom, Geometric Transformations III, p. 135, trans. by Abe Shenitzer, Random House, New York, 1973), our bifurcation approach exposes the elusive hyperbolic vectors, that we call gyrovectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Cannon, W. J. Floyd, R. Kenyon, and W. R. Parry, “Hyperbolic geometry,” in Flavors of Geometry, S. Levy, ed. (University Press, Cambridge, 1997), pp. 59–115.

    Google Scholar 

  2. A. A. Ungar, “Thomas precession: Its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics,” Found Phys. 27 (6), 881–951 (1997).

    Google Scholar 

  3. A. A. Ungar, “Thomas rotation and the parametrization of the Lorentz transformation group,” Found. Phys. Lett. 1 (1), 57–89 (1988).

    Google Scholar 

  4. A. A. Ungar, “Thomas precession and its associated grouplike structure,” Am. J. Phys. 59 (9), 824–834 (1991).

    Google Scholar 

  5. A. A. Ungar, “From Pythagoras to Einstein: The hyperbolic Pythagorean theorem,” Found. Phys. 28 (8), 1283–1321 (1998).

    Google Scholar 

  6. L. V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory (McGraw-Hill, New York, 1973).

    Google Scholar 

  7. S. G. Krantz, Complex Analysis: The Geometric Viewpoint (Mathematical Association of America, Washington, DC, 1990).

    Google Scholar 

  8. H. O. Pflugfelder, Quasigroups and Loops: Introduction (Heldermann, Berlin, 1990).

    Google Scholar 

  9. J. D. H. Smith, and A. B. Romanowska, Post-modern Algebra (Wiley, New York, 1999).

    Google Scholar 

  10. A. A. Ungar, “Extension of the unit disk gyrogroup into the unit ball of any real inner product space,” J. Math. Anal. Appl. 202 (3), 1040–1057 (1996).

    Google Scholar 

  11. J. D. H. Smith, and A. A. Ungar, “Abstract space-times and their Lorentz group,” J. Math. Phys. 37(6), 3073–3098 (1996).

    Google Scholar 

  12. V. Fock, The Theory of Space, Time and Gravitation, 2nd revised edn. (Macmillan, New York, 1964); translated from the Russian by N. Kemmer.

    Google Scholar 

  13. H. Bacry, Lectures on Group Theory and Particle Theory (Gordon 6 Breach, New York, 1977).

    Google Scholar 

  14. R. U. Sexl, and H. K. Urbantke, Relativität, Gruppen, Teilchen, 2nd edn. (Springer, Vienna, 1982).

    Google Scholar 

  15. A. A. Ungar, “Gyrovector spaces in the service of hyperbolic geometry,” in Mathematical Analysis and Applications, Th. M. Rassias, ed. (Hadronic, Florida, 2000).

    Google Scholar 

  16. J. McCleary, Geometry from a Differentiable Viewpoint (University Press, Cambridge, 1994).

    Google Scholar 

  17. L. Marder, “On uniform acceleration in special and general relativity,” Proc. Cambridge Philos. Soc. 53, 194–198 (1957).

    Google Scholar 

  18. H. Urbantke, “Physical holonomy, Thomas precession, and Clifford algebra,” Am. J. Phys. 58(8), 747–750 (1990).

    Google Scholar 

  19. A. A. Ungar, Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces (Kluwer Academic, Dordrecht, forthcoming).

  20. A. A. Ungar, “Midpoints in gyrogroups,” Found. Phys. 26 (10), 1277–1328 (1996).

    Google Scholar 

  21. M. J. Greenberg, Euclidean and Non-Euclidean Geometries, 3rd ed. (Freeman, New York, 1993).

    Google Scholar 

  22. S. Walter, “The non-Euclidean style of minkowskian relativity,” in The Symbolic Universe: Geometry and Physics 1890-1930 (Birkhäuser, Boston, 1999), pp. 91–127.

    Google Scholar 

  23. V. Varicak, Darstellung der Relativitätstheorie im dreidimensionalen Lobatchefskijschen Raume [Presentation of the Theory of Relativity in the Threedimensional Lobachevskian Space] (Zaklada, Zagreb, 1924).

    Google Scholar 

  24. H. S. M. Coxeter, Non-Euclidean Geometry, 6th ed. (Mathematical Association of America, Washington, DC, 1998).

    Google Scholar 

  25. J. Stillwell, Sources of Hyperbolic Geometry (American Mathematical Society, Providence, RI, 1996).

    Google Scholar 

  26. A. Tarski, and S. Givant, “Taraki's system of geometry,” Bull. Symb. Logic 5 (2), 175–214 (1999).

    Google Scholar 

  27. V. Pambuccian, “On the simplicity of an axiom system for plane Euclidean geometry,” Demonstratio Math. 30(3), 509–512 (1997).

    Google Scholar 

  28. B. J. Fei, and Z. G. Li, “Relativistic velocity and hyperbolic geometry,” Phys. Essays 10 (2), 248–255 (1997).

    Google Scholar 

  29. F. G. Kard, “Hyperbolic trigonometry in a relativistic velocity space,” Tartu Riikl. Ñl. Toimetised 117 (417) Metodolog. Voprosy Fiz. 3, 57-69 (1977).

  30. D. K. Sen, “3-dimensional hyperbolic geometry and relativity,” in Proceedings of the 2nd Canadian Conference on General Relativity and Relativistic Astrophysics (Toronto, Ontario, 1987), (World Scientific, Singapore, 1988), pp. 264–266.

    Google Scholar 

  31. A. Ramsay, and R. D. Richtmyer, Introduction to Hyperbolic Geometry (Springer, New York, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ungar, A.A. The Bifurcation Approach to Hyperbolic Geometry. Foundations of Physics 30, 1257–1282 (2000). https://doi.org/10.1023/A:1003636505621

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003636505621

Keywords

Navigation