Skip to main content
Log in

Abstract

Concrete quantum logics are quantum logics which allow for a set representation.They seem to be of significant conceptual value within quantum axiomatics andthey play an important role in the theory of orthomodular structures asset-representable orthomodular posets or lattices and they also sometimes constitutea “domain” for investigations in “noncommutative.” measure theory. This paperpresents a survey of recent results on this class of logics. Stress is put on thealgebraic and measure-theoretic aspects. Several open questions relevant tothe logicoalgebraic foundation of quantum theories are posed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bauer, H., Probability Theory and Elements of Measure Theory, Academia Press, 1981.

  2. Beltrametti, E., and Cassinelli, G., The Logic of Quantum Mechanics, Addison-Wesley, Reading, Massachusetts, 1981.

    Google Scholar 

  3. Beran, L., Orthomodular Lattices. Algebraic Approach, Academia, Prague and Reidel, Dordrecht, 1984.

    Google Scholar 

  4. Bruns, G., Greechie, R. J., Harding, J., and Roddy, M., Completions of orthomodular lattices, Order 7 (1990), 67-76.

    Google Scholar 

  5. Davies, R. O., Measures not approximable or not specifiable by means of balls, Mathematika 18 (1971), 157-160.

    Google Scholar 

  6. DeLucia, P., and Ptäk, P., Quantum probability spaces that are nearly classical, Bull. Polish Acad. Sci. Math. 40 (1992), 163-173.

    Google Scholar 

  7. Dvurečenskij, A., Gleason's Theorem and Application, Kluwer, Dordrecht, 1993.

    Google Scholar 

  8. Dvurečenskij, A., On the tensor product of orthoalgebras, Trans. Am. Math. Soc. 347 (1995), 1043-1057.

    Google Scholar 

  9. Foulis, D., and Ptäk, P., On the tensor product of Boolean algebras and orthoalgebras, Czechoslovak. Math. J. 45 (1995), 117-126.

    Google Scholar 

  10. Gleason, A., Measures on the closed subspace of a Hilbert space, J. Math. Mech. 6 (1957), 885-894.

    Google Scholar 

  11. Godowski, R., Varieties of orthomodular lattices with a strongly full set of states, Demonstratio Math. 14 (1981), 725-733.

    Google Scholar 

  12. Greechie, R., Orthomodular lattices admitting no states, J. Comb. Theory 10 (1971), 119-132.

    Google Scholar 

  13. Groot, J. de, and McDowell, R. H., Autohomeomorphism groups of 0-dimensional spaces, Compositio Math. 15 (1963), 203-209.

    Google Scholar 

  14. Gudder, S., Stochastic Methods of Quantum Mechanics, North-Holland, Amsterdam, 1979.

    Google Scholar 

  15. Gudder, S., Quantum probability spaces, Proc. Am. Math. Soc. 21 (1969), 296-302.

    Google Scholar 

  16. Gudder, S., and Zerbe, J., Additivity of integrals on generalized measure spaces, J. Comb. Theory (A) 30 (1985), 42-51.

    Google Scholar 

  17. Halmos, P., Measure Theory, Van Nostrand, New York, 1950.

    Google Scholar 

  18. Harding, J., Orthomodular lattices whose Mac Neille completions are not orthomodular, Order 8 (1991), 93-103.

    Google Scholar 

  19. Iturrioz, L., A representation theory for orthomodular lattices by means of closure spaces, Acta Math. Hung. 47 (1986), 145-151.

    Google Scholar 

  20. Jackson, S., and Mauldin, R. D., On the s-class generated by open balls, to appear.

  21. Kalmbach, G., Orthomodular lattices do not satisfy any special lattice equation, Arch. Math. 27 (1977), 7-8.

    Google Scholar 

  22. Kalmbach, G., Orthomodular Lattices, Academic Press, New York, 1983.

    Google Scholar 

  23. Keleti, T., and Preiss D., The balls do not generate all Borel sets using complements and countable disjoint unions, to appear.

  24. Klukowski, J., On representations of Boolean orthomodular partially ordered sets, Demonstratio Math. 8 (1975), 405-423.

    Google Scholar 

  25. Kochen, S., and Specker, E. P., The problem of hidden variables in quantum mechanics, J. Math. Mech. 17(1967), 59-87.

    Google Scholar 

  26. Mayet, R., Equational bases for some varieties of orthomodular lattices related to states, Algebra Universalis 23 (1986), 167-195.

    Google Scholar 

  27. Müller, V., Jauch-Piron states on concrete quantum logics, Int. J. Theor. Phys. 32 (1993), 433-442.

    Google Scholar 

  28. Müller, V., Ptäk, P., and Tkadlec, J., Combinatorial properties of concrete quantum logics, Int. J. Theor. Phys. 31 (1992), 843-854.

    Google Scholar 

  29. Navara, M., On generating finite orthomodular sublattices, Tatra Mountains Math. Publ. 10 (1997), 109-117.

    Google Scholar 

  30. Navara, M., When is the integral on quantum probability space additive? Real Analysis Exchange 14 (1989), 228-234.

    Google Scholar 

  31. Navara, M., Integration on generalized measure spaces, Acta Univ. Carolinae Math. Phys. 30 (1989), 121-124.

    Google Scholar 

  32. Navara, M., There are concrete OML's which have non-two-valued pure states, preprint, Prague (1998).

  33. Navara, M., The integral on s-classes is monotonic, Czechoslovak Math. J. 20 (1984), 417-421.

    Google Scholar 

  34. Navara, M., Quantum logics representable as kernels of measures, Czechoslovak Math. J. 46 (1986), 587-597.

    Google Scholar 

  35. Navara, M., and Ptük, P., Two-valued measures on s-classes, as. pe?st. mat. 108 (1983), 225-229.

  36. Navara, M., and Ptäk, P., Almost Boolean orthomodular posets, J. Pure Appl. Alg. 60 (1989), 105-111.

    Google Scholar 

  37. Navara, M., and Tkadlec J., Automorphisms of concrete logics, Comment. Math. Univ. Carolinae 32 (1991), 15-25.

    Google Scholar 

  38. Neveu, J., Bases Mathe´matiques du Calcul des Probabilite´s Masson, Paris, 1964.

  39. Neubrun, T., A note on quantum probability spaces, Proc. Am. Math. Soc. 25 (1970), 672-675.

    Google Scholar 

  40. Olejček, V., q-sigma-algebras generated by balls, Int. J. Theor. Phys. 34, (1995), 1643-1646.

    Google Scholar 

  41. Olejček, V., The s-class generated by balls contains all Borel sets, Proc. Am. Math. Soc. 123 (1995), 3665-3675.

    Google Scholar 

  42. Ovtchinikov, P., Exact topological analogs to orthoposets, Proc. Am. Math. Soc. 125 (1997), 2839-2861.

    Google Scholar 

  43. Preiss, D., and Tier, J., Measures in Banach spaces are determined by their values on balls, Mathematika 38 (1991), 391-397.

    Google Scholar 

  44. Ptäk, P., Hidden variables on concrete logics (extensions), Comment. Math. Univ. Carolinae 28 (1987), 157-163.

    Google Scholar 

  45. Ptäk, P., Some nearly Boolean orthomodular posets, Proc. Am. Math. Soc. 126 (1998), 2039-2046.

    Google Scholar 

  46. Ptäk, P., Logics with given centres and state spaces, Proc. Am. Math. Soc. 88 (1983), 106-109.

    Google Scholar 

  47. Ptäk, P., Summing of Boolean algebras and logics, Demonstratio Math. 19 (1986), 349-357.

    Google Scholar 

  48. Ptäk, P., Jauch-Piron property (everywhere!) in the logico-algebraic foundation of quantum theories, Int. J. Theor. Phys. 32 (1993), 1985-1990.

    Google Scholar 

  49. Ptäk, P., Weak dispersion-free states and the hidden variables hypothesis, J. Math. Phys. 24 (1983), 839-840.

    Google Scholar 

  50. Ptäk, P., Extensions of states on logics, Bull. Acad. Polon. Sci. Ser. Math. 33 (1985), 493-497.

    Google Scholar 

  51. Ptäk, P., and Pulmannovä, S., Orthomodular Structures as Quantum Logics, Kluwer, Dordrecht, 1991.

    Google Scholar 

  52. Ptäk, P., and Pulmannovä, S., A measure theoretic characterization of Boolean algebras among orthomodular lattices, Comment. Math. Univ. Carolinae 35 (1994), 205-208.

    Google Scholar 

  53. Ptäk, P., and Tkadlec, J., A note on determinacy of measures, Čas. p?st. mat. 113 (1988), 435-436.

    Google Scholar 

  54. Ptäk, P., and Wright, J. D. M., On the concreteness of quantum logics, Aplikace Mat. 30 (1985), 274-285.

    Google Scholar 

  55. Riečanovä, Z., Atomic orthoposets with orthomodular Macneille completions, Tatra Mountains Math. Publ. 2 (1993), 203-207.

    Google Scholar 

  56. Riss, E., On the scooping property of measures by means of disjoint balls, Acta Univ. Carolinae Math. Phys. 37 (1996), 71-82.

    Google Scholar 

  57. Sikorski, R., Boolean Algebras, Springer-Verlag, Berlin, 1969.

    Google Scholar 

  58. Sultanbekov, F., Operation associated to partitions and best extension of signed measures on set logics, Int. J. Theor. Phys. 34 (1995), 1735-1739.

    Google Scholar 

  59. Svozil, K., and Tkadlec, J., Greechie diagrams, nonexistence of measures in quantum logics and Kochen-Specker type constructions, J. Math. Phys. 37 (1996), 5380-5401.

    Google Scholar 

  60. Svozil, K., Quantum Logics, Springer-Verlag, 1998.

  61. Šipoă, J., The integral on quantum probability space is monotonic, Rep. Math. Phys. 21 (1985), 65-68.

    Google Scholar 

  62. Tkadlec, J., Partially additive states on orthomodular posets, Coll. Math. LXII (1991), 7-14.

    Google Scholar 

  63. Varadarajan, V., Geometry of Quantum Theory I, Van Nostrand, Princeton, New Jersey (1968).

    Google Scholar 

  64. Zelený, M., The Dynkin system generated by balls in Rid contains all Borel sets, to appear.

  65. Zierler, N., and Schlesinger, M., Boolean embeddings of orthomodular sets and quantum logics, Duke Math. J. 33 (1965), 251-262.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pták, P. Concrete Quantum Logics. International Journal of Theoretical Physics 39, 827–837 (2000). https://doi.org/10.1023/A:1003626929648

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003626929648

Keywords

Navigation