Skip to main content
Log in

Cyclic potential sweep electrolysis for formation of poly(2-vinylpyridine) coatings

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A cyclic potential sweep (CPS) technique has been used to form coatings of poly(2-vinylpyridine) on mild steel substrates by electropolymerization of the monomer. This method can produce thick and uniform coatings of much higher quality than can be formed by other electrochemical methods such as galvanostatic electrolysis, constant cell-potential electrolysis and chronoamperometry. The range and rate of the potential sweep during the CPS are important for successful coating formation. Potential sweeps between −1.0 and −2.2 V vs SCE at rates from 10 to 50 mV s−1 have been found to be most suitable for the formation of poly(2-vinylpyridine) coatings. The essential reason for the successful application of the CPS technique to the electropolymerization process is the compatibility of the nature of the CPS process and the mechanism of 2-vinylpyridine electropolymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.D. Abruna, P. Denisevich, M. Umana, T.J. Meuyer and R.W. Murray, J. Am. Chem. Soc. 103 (1981) 1.

    Google Scholar 

  2. R.W. Murray, In: R.A. Huggins, J.A. Giordmaine and J.B. Wachtman (eds) Ann. Rev. Mater. Sci., vol. 14, Annual Reviews, Palo Alto, CA (1984) p. 145.

    Google Scholar 

  3. R.W. Murray, In: A.J. Bard (ed.) Electroanalytical Chemistry, vol. 13, Marcel Dekker, New York (1984) p. 191.

    Google Scholar 

  4. R. Hillman, In: R.G. Linford (ed.) Electrochemical Science and Technology of Polymers, vol. 1, Elsevier Applied Science, London (1987) p. 103.

    Google Scholar 

  5. B.L. Funt, In: H. Lund and M.M. Baizer (eds) Organic Electrochemistry, Marcel Dekker, New York (1991) p. 1337.

    Google Scholar 

  6. N.C. Billingham and P.D. Calvert, Adv. Polym. Sci. 90 (1989) 104.

    Google Scholar 

  7. I. Sekine, K. Kohara, T. Sugiyama and M. Yuasa, J. Electrochem. Soc. 139 (1992) 3090.

    Google Scholar 

  8. G. Troch-Nagels, R. Winand, A. Weymeersch and L. Renard, J. Appl. Electrochem. 22 (1992) 756.

    Google Scholar 

  9. A. de Bruyne, J.L. Delplancke and R. Winand, J. Appl. Electrochem. 25 (1995) 284.

    Google Scholar 

  10. X. Ling, J.J. Byerley, C.M. Burns and M.D. Pritzker, J. Appl. Electrochem. 27 (1997) 1343.

    Google Scholar 

  11. J.O'M. Bockris and A.K.N. Reddy, Modern Electrochemistry, Plenum Press, New York (1970).

    Google Scholar 

  12. A.J. Bard and L.R. Faulkner, Electrochemical Methods, J. Wiley & Sons, Toronto (1980).

    Google Scholar 

  13. G. Mengoli and B.M. Tidswell, Polym. 16 (1975) 881.

    Google Scholar 

  14. J.R. MacCallum and D.H. MacKerron, Brit. Polym. J. 14 (1982) 14.

    Google Scholar 

  15. J.O. Iroh, J.P. Bell and D.A. Scola, J. Appl. Polym. Sci. 43 (1991) 2237.

    Google Scholar 

  16. C.S. Lee and J.P. Bell, J. Appl. Polym. Sci. 57 (1995) 931.

    Google Scholar 

  17. G. Mengoli, S. Daolio, U. Giulio and C. Folonari, J. Appl. Electrochem. 9 (1979) 483.

    Google Scholar 

  18. G. Mengoli, M.M. Musiani and F. Furlanetto, J. Appl. Electrochem. 137 (1990) 162.

    Google Scholar 

  19. G. Mengoli and M.M. Musiani, Electrochim. Acta 31 (1986) 201.

    Google Scholar 

  20. M.M. Musiani, F. Furlanetto, P. Guerriero and J. Heitbaum, J. Appl. Electrochem. 23 (1993) 1069.

    Google Scholar 

  21. F.S. Teng, R. Mahalingam, R.V. Subramanian and R.A.V. Raff, J. Electrochem. Soc. 124 (1977) 995.

    Google Scholar 

  22. G. Mengoli, P. Bianco, S. Daolio, and M.T. Munari, J. Electrochem. Soc. 128 (1981) 2276.

    Google Scholar 

  23. U. Akbulut and B. Hacioglu, J. Polym. Sci., Part A, Polym. Chem. 29 (1991) 219.

    Google Scholar 

  24. X. Zhang, J.P. Bell and M. Narkis, J. Appl. Polym. Sci. 62 (1996) 1303.

    Google Scholar 

  25. P. Denisevich, H.D. Abruna, C.R. Leidner, T.J. Meyer and R.W. Murray, Inorg. Chem. 21 (1982) 2153.

    Google Scholar 

  26. R.L. McCarley, J. Electrochem. Soc. 137 (1990) 218C.

    Google Scholar 

  27. S.S. Huang, J. Li, H.G. Lin and R.Q. Yu, Mikrochim. Acta 117 (1995) 145.

    Google Scholar 

  28. H. Ohno, H. Nishihara and K. Aramaki, Corr. Sci. 30 (1990) 603.

    Google Scholar 

  29. X. Ling, M.D. Pritzker, C.M. Burns and J.J. Byerley, Macromolecules 31 (1998) 9134.

    Google Scholar 

  30. X. Ling, M.D. Pritzker, C.M. Burns and J.J. Byerley, J. Appl. Polym. Sci. 67 (1998) 149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, X., Pritzker, M., Burns, C. et al. Cyclic potential sweep electrolysis for formation of poly(2-vinylpyridine) coatings. Journal of Applied Electrochemistry 29, 1005–1013 (1999). https://doi.org/10.1023/A:1003563916603

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003563916603

Navigation