Skip to main content
Log in

Environmental heterogeneity patterns and predictive models of chlorophyll a in a Brazilian coastal lagoon

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The spatial and temporal patterns of environmental heterogeneity in a Brazilian coastal lagoon were described by means of principal component analysis. Carapebus Lagoon has been subject to eutrophication, due to increased nutrient loading from domestic and industrial sewage. Spatial variations in the trophic state and temporal variations in the degree of marine influence are the major sources of environmental heterogeneity in this lagoon. The close and significant relation between total phosphorus and chlorophyll a (r2 = 60, p <0.05), and the high TN:TP ratios (up to 50:1) suggest that phosphorus might be the major nutrient controlling phytoplankton biomass in this lagoon. However, nitrogen might be more important as a growth-limiting nutrient in the eutrophic site of the lagoon, where high total phosphorus concentration (up to 338 μg l-1) and low TN:TP mass ratios (<10:1) were found. In a multiple regression model, total phosphorus and electric conductivity

explained together a high and significant (R2=0.86, p < 0.001) amount of variance in chlorophyll yields. This predictive model of chlorophyll a is important as a tool for Carapebus lagoon management because it allows one to predict the algal biomass development of the lagoon in response to nutrients and marine water inputs resulting from man's activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes, R. S. K., 1980. Coastal lagoons. Cambridge Univ. Press, Cambridge, UK, 106 pp.

    Google Scholar 

  • Borrego, S. A., 1994. Secondary productivity in coastal lagoons. In B. Kjerfve (ed.), Coastal Lagoon Processes. Elsevier Science, Amsterdam: 243–286

    Google Scholar 

  • Campbell, C. E. & E. E. Prepas, 1986. Evaluation of factors related to the unusually low chlorophyll levels in praire saline lakes. Can. J. Fish. aquat. Sci. 43: 846–854.

    Google Scholar 

  • Canfield, D. E. & R. W. Bachmann, 1981. Prediction of total phosphorus concentration, chlorophyll a and secchi depths in natural and artificial lakes. Can. J. Fish. aquat. Sci. 38: 414–423.

    Google Scholar 

  • Canfield, D. E., J. V. Shireman, D. E. Colle, W. T. Haller, C. E. Watkins & M. J. Maceina, 1984. Prediction of chlorophyll a concentrations in Florida lakes: importance of aquatic macrophytes. Can. J. Fish. aquat. Sci. 41: 497–501.

    CAS  Google Scholar 

  • Dillon, P. J. & F. H. Rigler, 1974. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19 (5): 767–773.

    CAS  Google Scholar 

  • Downing, J. A. & E. McCauley, 1992. The nitrogen: phosphorus relationship in lakes. Limnol. Oceanogr. 37 (5): 936–945.

    CAS  Google Scholar 

  • Ferris, J. M. & P. A. Tyler, 1985. Chlorophyll-total phosphorus relationships in lake Burragorang, New South Wales, and some other Southern Hemisphere Lakes. Aust. J. Mar. Freshwat. Res. 36: 157–168.

    Article  CAS  Google Scholar 

  • Fong, P., J. B. Zedler & R. M. Donohoe, 1993. Nitrogen vs. phosphorus limitation of algal biomass in shallow coastal lagoons. Limnol. Oceanogr. 38 (5): 906–923.

    Article  Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohnstad, 1978. Methods for physical and chemical analysis of freshwater. Second Edition. Blackwell Sci. Publisher, Oxford, UK, 315 pp.

    Google Scholar 

  • Gran, G., 1952. Determination of the equivalent point in potentiometric titrations Part II. Analyst 77: 661–671.

    Article  CAS  Google Scholar 

  • Hansson, L. A., 1992. The role of food chain composition and nutrient avaiability in shaping algal biomass development. Ecology 73 (1): 241–247.

    Article  Google Scholar 

  • Hoyer, M. V. & J. R. Jones, 1983. Factors affecting the relation between phosphorus and chlorophyll a in Midwestern reservoirs. Can. J. Fish. aquat. Sci. 40: 192–199.

    CAS  Google Scholar 

  • James, F. C. & C. E. McCulloch, 1990. Multivariate analysis in ecology and systematics: Panacea or pandora's box? Ann. Rev. Ecol. Syst. 21: 129–166.

    Google Scholar 

  • Jones, J. R. & R. W. Bachman, 1976. Prediction of phosphorus and chlorophyll levels in lakes. J. Wat. Pollut. Cont. Fed. 48: 2176–2182.

    CAS  Google Scholar 

  • Kjerfve, B., 1994. Coastal lagoons. In B. Kjerfve (ed.), Coastal Lagoon Processes Elsevier Science, Amsterdam: 1–8.

    Google Scholar 

  • Kjerfve, B. & K. E. Magill, 1989. Geographic and hydrographic characteristics of shallow coastal lagoons. Mar. Geol. 88: 187–199.

    Article  Google Scholar 

  • Knoppers, B., 1994. Aquatic primary production in coastal lagoons. In B. Kjerfve (ed.), Coastal Lagoon Processes. Elsevier Science, Amsterdam: 243–286.

    Google Scholar 

  • Koroleff, F., 1983. Determination of ammonia. In K. Grasshoff, M. Ehrhardt & K. Kremling (eds), Methods of Sea Water Analysis. Verlag Chemie, New York, NY: 150–157.

    Google Scholar 

  • Koroleff, F., 1983. Determination of phosphorus. In K. Grasshoff, M. Ehrhardt & K. Kremling (eds), Methods of Sea Water Analysis. Verlag Chemie, New York, NY: 125–139.

    Google Scholar 

  • Lacerda, L. D., 1994. Biogeochemistry of heavy metals in coastal lagoons. In B. Kjerfve (ed.), Coastal Lagoon Processes. Elsevier Science, Amsterdam: 221–241.

    Google Scholar 

  • Lampert, W., W. Flecker, H. Rai & Taylor, B., 1986. Phytoplankton control by grazing zooplankton: a study on the spring clear water phase. Limnol. Oceanogr. 31: 478–490.

    Google Scholar 

  • Lehman, J. T. & Sandgren, C. D., 1985. Species-specific rates of growth and grazing loss among freshwater algae. Limnol. Oceanogr. 30: 34–46.

    Google Scholar 

  • Levine, S. N. & D.W. Schindler, 1992. Modification of the N:P ratio in lakes by in situ processes. Limnol. Oceanogr. 37 (5): 917–935.

    CAS  Google Scholar 

  • Lorenzen, C. F., 1967. Determination of chlorophyll in pheopigments: spectrophotometric equations. Limnol. Oceanogr. 16: 990–992.

    Google Scholar 

  • MacIntosh, D. J., 1994. Aquaculture in coastal lagoons. In B. Kjerfve (ed.), Coastal Lagoon Processes. Elsevier Science, Amsterdam: 401–436

    Google Scholar 

  • Mackereth, F. J. H., J. Heron & J. F. Talling, 1978. Water Analysis: some revised methods for limnologists. Freshwater Biological Association, Scientific Publication 36, 120 pp.

  • Mazumder, A., 1994. Phosphorus-chlorophyll relationships under contrasting herbivory and thermal stratification: predictions and patterns. Can. J. Fish. aquat. Sci. 51: 390–400.

    CAS  Google Scholar 

  • McCauley, E., J. A. Downing & S. Watson, 1989. Sigmoid relationships between nutrients and chlorophyll among lakes. Can. J. Fish. aquat. Sci. 46: 1171–1175.

    CAS  Google Scholar 

  • Molot, L. A. & P. J. Dillon, 1991. Nitrogen to phosphorus ratios and the prediction of chlorophyll in phosphorus-limited lakes in Central Ontario. Can. J. Fish. aquat. Sci. 48 (1): 140–145.

    CAS  Google Scholar 

  • Nicholls, K. H. & P. J. Dillon, 1978. An evaluation of phosphorus-chlorophyll-phytoplankton relationships for lakes. Int. Rev. ges. Hydrobiol. 63 (3): 141–154.

    CAS  Google Scholar 

  • Nusch, E. A. & G. Palme, 1975. Biologische methoden für die praxis der gewässeruntersuchung. GWF-Wasser/ Abwasser 116: 562–565.

    Google Scholar 

  • OECD, 1982. Eutrophication of waters: monitoring, assessment and control. Organization for Economic Co-operation and Development, Paris, 153 pp.

    Google Scholar 

  • Pace, M. L., 1984. Zooplankton community structure, but not biomass, influences the phosphorus-chlorophyll a relationship. Can. J. Fish. aquat. Sci. 41: 1089–1096.

    Google Scholar 

  • Panosso, R. F., J. L. Attayde & D. Muehe, 1998. Morfometria das lagoas Imboassica, Cabiunas, Comprida e Carapebus: implicações para seu funcionamento e manejo. In F.A. Esteves (ed.), Ecologia das Lagoas Costerias do Parque Nacional da Restinga de Jurubatiba e do Municipio de Macaé (RJ). NUPEM-UFRJ, Rio de Janeiro: 91–108.

    Google Scholar 

  • Pauly, D. & A. Yáñez-Arancibia, 1994. Fisheries in coastal lagoons. In B. Kjerfve (ed.), Coastal Lagoon Processes. Elsevier Science, Amsterdam: 377–396.

    Google Scholar 

  • Prairie, Y. T., C. M. Duarte & J. Kalff, 1989. Unifying nutrientchlorophyll relationships in lakes. Can. J. Fish. aquat. Sci. 46: 1176–1182.

    CAS  Google Scholar 

  • Quirós, R., 1990. Factors related to variance of residuals in chlorophyll-total phosphorus regressions in lakes and reservoirs of Argentina. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 343–355.

    Google Scholar 

  • Redfield, A. C., 1958. The biological control of chemical factors in the environment. Am. Sci. 46: 205–221.

    CAS  Google Scholar 

  • Riley, E. T. & E. E. Prepas, 1985. Comparision of the phosphorus-chlorophyll relationships in mixed and stratified lakes. Can. J. Fish. aquat. Sci. 42: 831–835.

    Article  CAS  Google Scholar 

  • Sakamoto, M., 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch. Hydrobiol. 62: 1–28.

    Google Scholar 

  • Smith, V. H. & J. Shapiro, 1981. Chlorophyll-phosphorus relations in individual lakes: their importance to lake restoration strategies. Envir. Sci. Technol. 15 (4): 444–451.

    Article  CAS  Google Scholar 

  • Smith, V. H., 1979. Nutrient dependence of primary productivity in lakes. Limnol. Oceanogr. 24: 1051–1064.

    Google Scholar 

  • Smith, V. H., 1982. The nitrogen and phosphorus dependence of algal biomass in lakes: an empirical and theoretical analysis. Limnol. Oceanogr. 27 (6): 1101–1112.

    Article  CAS  Google Scholar 

  • Smith, V. H., 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669–671.

    PubMed  Google Scholar 

  • Vollenweider, R. A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. ital. Idrobiol. 33: 53–83.

    CAS  Google Scholar 

  • Watson, S., E. McCauley & J. A. Downing, 1992. Sigmoid relationships between phosphorus, algal biomass and algal community structure. Can. J. Fish. aquat. Sci. 49: 2605–2610.

    Article  CAS  Google Scholar 

  • Wetzel, R. G., 1983. Limnology. 2nd edition. Saunders College Publishing, 863 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attayde, J.L., Bozelli, R.L. Environmental heterogeneity patterns and predictive models of chlorophyll a in a Brazilian coastal lagoon. Hydrobiologia 390, 129–139 (1998). https://doi.org/10.1023/A:1003546810358

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003546810358

Navigation