Skip to main content
Log in

Electrolytic oxidation of trichloroethylene using a ceramic anode

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Trichloroethylene (TCE) was transformed to CO2, CO, Cl and ClO 3 at the anode of a two-chambered electrolytic cell. The working electrode was constructed from Ebonex®, an electrically conductive ceramic (Ti4O7). Under our experimental conditions (anode potential Ea = 2.5 to 4.3 V vs SSCE), the disappearance of TCE was first order in TCE concentration. The transformation rate was independent of pH in the range 1.6 < pH < 11. TCE oxidation occurred only on the anodic surface and was limited by mass transport at high potentials (Ea > 4.0V). The maximum (transport-limited), surface-area-normalized rate constant was about 0.002 43cms−1. Carbon-containing products included CO2 primarily with traces of CO. At neutral and alkaline pHs, the only chlorine-containing products were Cl and ClO 3 . Hydroxyl radicals were detected in the anodic compartment using a spin trap (4-POBN). A kinetic model was successfully correlated with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.C. Millett and J.N. Engl, J. Water Works Assoc. 109(2) (1995) 140.

    Google Scholar 

  2. F.D. Schaumburg, Environ. Sci. Technol. 24(1) (1990) 17.

    Google Scholar 

  3. V. Karel, Handbook of Environmental Data on Organic Chemicals, 2nd edn, Elsevier, New York (1983).

    Google Scholar 

  4. A.M. Fan, Rev. Environ. Contam. Toxicol. 101 (1988) 55.

    Google Scholar 

  5. F.W. Pontius, J. AWWA 2 (1990) 32.

    Google Scholar 

  6. Public Law 99–339. Safe Drinking Water Act Amendments of 1986 (19 June 1986).

  7. H. Uchiyama, K. Oguri, O. Yagi and E. Kokafuta. Biotechnology Letters 14(7) (1992) 619.

    Google Scholar 

  8. C.D. Little, A.V. Palumbo, S.E. Herbes, M.E. Lidstrom, R.L. Tyndall and P.J. Gilmer, Appl. Environ. Microbiol. 54(4) (1988) 951.

    Google Scholar 

  9. M.J.K. Nelson, S.O. Montgomery, E.J. O'neill and P.H. Pritchard, Appl. Environm. Microbiol. 52(2) (1986) 383.

    Google Scholar 

  10. B.D. Ensley, Annu. Rev. Microbiol. 45 (1991) 283.

    Google Scholar 

  11. W.W. Mohn and J.M. Tiedje, Microbiol. Rev. 56(3) (1992) 482.

    Google Scholar 

  12. G.R. Chaudhry and S. Chapalamadugu, Microbiol. Rev. 55(1) (1991) 59.

    Google Scholar 

  13. M.L. Hanna and R.T. Taylor, Biotechnol. and Bioeng. 51 (1996) 659.

    Google Scholar 

  14. M.W. Fitch, J. Weissman, P. Phelps, G. Georgiou and G.E. Speitel Jr, Wat. Res. 30(11) (1996) 2655.

    Google Scholar 

  15. Y. Zhang, J.C. Crittenden, D.W. Hand and D.L. Perram, Environ. Sci. Technol. 28(3) (1994) 435.

    Google Scholar 

  16. M.R. Prairie, T.E. Pacheco and L.R. Evans, INT. Solar Energy Conference, ASME, New York (1992).

    Google Scholar 

  17. W.J Cooper, D.E. Meacham, M.G. Nickelsen, K. Lin, D.B. Ford, C.N. Kurucz and T.D. Waite, J. Air & Waste Management Ass. 43(10) (1993) 1358.

    Google Scholar 

  18. C.N. Kurucz, T.D. Waite, W.J. Cooper and M.G. Nickelson, Phys. Chem. 45(5) (1995) 805.

    Google Scholar 

  19. S.J. Masten and J. Hoigne, Ozone Sci. & Eng. 14(3) (1992) 197.

    Google Scholar 

  20. D.D. Gates and R.L. Siegrist, 1995. J. Environ. Eng. 121(9) (1995) 639.

    Google Scholar 

  21. E.G. Baker and L.J. Sealock, 1988. Catalytic Destruction of Hazardous Organics in Aqueous Solutions. Available from the National Technical Information Service (Springfield VA 22161) as DE88–009535. Report PNL-6491–2 (April, 1988).

  22. T. Nagaoka, J. Yamashita, M. Kaneda and K. Ogura, J. Electroanal. Chem. 335 (1992) 187.

    Google Scholar 

  23. T. Nagaoka, J. Yamashita, M. Takase and K. Ogura, J. Electrochem. Soc. 141(6) (1994) 1522.

    Google Scholar 

  24. J.P. Hoare, Encyclopedia of Electrochemistry of the Elements, vol. 2, Marcel Dekker, New York (1974).

    Google Scholar 

  25. G.V. Buxton, C. Greenstock, W.P. Hellman and A.B. Ross, J. Phys. Chem. Ref. Data 17(2) (1988) 513.

    Google Scholar 

  26. W.R. Haag and C.C.D. Yao, Environ. Sci. Technol. 26(5) (1992) 1005.

    Google Scholar 

  27. S.G. Huling, PhD dissertation, University of Arizona, Tucson, AZ (1996).

  28. K. Makino, M.M.M. Mossoba and P. Riesz, J. Phys. Chem. 87 (1983) 1369.

    Google Scholar 

  29. R.P. Mason, P.M. Hanna, M.J. Burkitt and M.B. Kadiiska, Environ. Health Perspectives 102 (1994) 33.

    Google Scholar 

  30. J.E. Graves, Doctoral thesis. Southampton University, UK (1991).

  31. R.L. Clarke, Proceedings of the second international forum on Electrolysis in the Chemical Industry, Deerfield Beach, FA (1988).

    Google Scholar 

  32. P.C.S. Hayfield and R.L. Clarke, Proceedings of the electrochemical society meeting, Los Angeles, CA (1989).

  33. R.L. Clarke, Electrochemical Processing ± Innovation and Progress, Moat House International, Glasgow, UK (21–23 April) (1993).

    Google Scholar 

  34. J.E. Graves, D. Pletcher, R.L. Clarke and F.C. Walsh, J. Appl. Electrochem. 21 (1991) 848.

    Google Scholar 

  35. J. Walling, Acc. Chemical Res. 8 (1975) 125.

    Google Scholar 

  36. J.B. Hiskey and V.M. Sanchez, J. Appl. Electrochem. 20 (1990) 479.

    Google Scholar 

  37. Z. Liu, E.A. Betterton and R.G. Arnold, Environmental Engineering Science 16(1) (1999) 1.

    Google Scholar 

  38. SPSS Inc., SigmaPlot.(R). 4.0, Transforms & Regressions for Window.R. 95, NT and 3.1, Reference Manual, Chicago 8–1–8–38 (1997).

  39. C.N. Sawyer and P.C. McCarty, Chemistry for Sanitary Engineers, 2nd edn, McGraw-Hill, New York (1967).

    Google Scholar 

  40. K. Rajeshwar, J.G. Ibanez and G.M. Swain, J. Appl. Electrochem. 24 (1994) 1077.

    Google Scholar 

  41. R.C. Weast and M.J. Astle, CRC Handbook of Chemistry and Physics, CRC press Boca Raton, FA (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Betterton, E. & Arnold, R. Electrolytic oxidation of trichloroethylene using a ceramic anode. Journal of Applied Electrochemistry 29, 961–970 (1999). https://doi.org/10.1023/A:1003541706456

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003541706456

Navigation