Skip to main content
Log in

Oxygen dependent habitat selection in surface and hyporheic environments by Gammarus roeseli Gervais (Crustacea, Amphipoda): experimental evidence

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Field distributions of benthic and hyporheic invertebrates are dynamic and are influenced by many physical and chemical factors. A laboratory flume containing natural gravel substrates was used to test the hypothesis that the amphipod Gammarus roeseli Gervais actively selects habitat based on two important environmental variables, dissolved oxygen concentration and direction of water flow. Under homogeneous oxygen concentrations throughout the flume, amphipods accumulated downstream. During trials with uniformly hypoxic conditions throughout the flume, G. roeseli moved to stones and screens at the water surface and above, into the zone normally saturated with humidity. This behavior, termed aquatic surface respiration, may enhance survival during periods of oxygen deficiency. Oxygen gradients were created in the flume by injecting water of differing oxygen concentrations into the head and the center of the channel. A statistically significant response to these gradients by G. roeseli demonstrates active selection of regions with more favorable oxygen concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhattacharyya, G. A. & R. A. Johnson, 1977. Statistical Concepts and Methods. J. Wiley and Sons, New York, 476 pp.

    Google Scholar 

  • Boulton, A., 1991. Invertebrate recolonization of small patches of defaunated hyporheic sediments in a Sonoran Desert stream. Freshwat. Biol. 26: 267–277.

    Article  Google Scholar 

  • Carman, K. R. & M. A. Todaro, 1996. Influence of polycyclic aromatic hydrocarbons on the meiobenthic copepod community of a Louisiana salt marsh. J. exp. mar. Biol. Ecol. 198: 37–54.

    Article  CAS  Google Scholar 

  • Cartar, R. V. & M. V. Abrahams, 1997. Predicting the distribution of organisms among few patches: problems with detecting departures from the ideal free distribution. Oikos 78: 388–393.

    Google Scholar 

  • Clinton, S. M., N. B. Grimm & S. G. Fisher, 1996. Response of a hyporheic invertebrate assemblage to drying disturbance in a desert stream. J. n. am. benthol. Soc. 15: 700–712.

    Article  Google Scholar 

  • Cook, R. & C. Boyd, 1965. The avoidance by Gammarus oceanicus Segerstrale (Amphipoda, Crustacea) of anoxic regions. Can. J. Zool. 43: 971–975.

    Article  PubMed  CAS  Google Scholar 

  • Costa, H., 1967. Responses of Gammarus pulex (L.) to modified environment. III. Reactions to low oxygen tensions. Crustaceana 13: 175–189.

    Article  Google Scholar 

  • Danielopol, D. L., 1975. Der Einfluss von Verschmutung auf die Biozoenosen des Interstitials von Fliessgewaessern. Wissenschaftliche Kurzreferate, 18. Jahres-Arbeitstagung der Internationalen Arbeitsgemeinschaft Donauforschung, Regensburg 1: 143–151.

    Google Scholar 

  • Danielopol, D. L., 1976. The distribution of the fauna in the interstitial habitats of riverine sediments of the Danube and the Piesting (Austria). Int. J. Speleo. 8: 23–51.

    Google Scholar 

  • Danielopol, D. L., 1989. Ground water fauna associated with riverine aquifers. J. n. am. benthol. Soc. 8: 18–35.

    Article  Google Scholar 

  • DeFur, P. L., C. P. Magnum & J. E. Reese, 1990. Respiratory responses of the blue crab Callinectes sapidus to long-term hypoxia. Biol. Bull. 178: 46–54.

    Google Scholar 

  • Dole-Olivier, M-J. & P. Marmonier, 1992a. Effects of spate on the vertical distribution of the interstitial community. Hydrobiologia 230: 49–61.

    Article  Google Scholar 

  • Dole-Olivier, M-J. & P. Marmonier, 1992b. Patch distribution of interstitial communities: prevailing factors. Freshwat. Biol. 27: 177–191.

    Article  Google Scholar 

  • Dole-Olivier, M-J., P. Marmonier & J. L. Beffy, 1997. Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium? Freshwat. Biol. 37: 257–276.

    Article  Google Scholar 

  • Edler, C. & W. K. Dodds, 1996. The ecology of a subterranean isopod Caecidotea tridentata. Freshwat. Biol. 35: 249–260.

    Article  Google Scholar 

  • Foeckler, F. & E. Schrimpff, 1985. Gammarids in streams of Northeastern Bavaria, F.R.G. II. The different hydrochemical habitats of Gammarus fossarum Koch, 1835 and Gammarus roeseli Gervais, 1835. Arch. Hydrobiol. 104: 269–286.

    Google Scholar 

  • Gamble, J., 1971. The responses of the marine amphipods Corophium arenatium and C. volutator to gradients and to choices of different oxygen concentrations. J. exp. Biol. 54: 275–290.

    Google Scholar 

  • Gaufin, A. R., 1973. Water quality requirement of aquatic insects. U.S. EPA 660/3–73–004, Corvallis, 76 pp.

  • Hervant, F., J. Mathieu, G. Messana, 1997b. Locomotory, ventilatory and respiratory responses of the subterranean Stenasellus virei (Crustacea, Isopoda) to severe hypoxia and subsequent recovery. C. R. Acad. Sci., Paris, Sci. Vie 320: 139–148.

    CAS  Google Scholar 

  • Hervant, F., J. Mathieu, D. Garin & A. Freminet, 1995. Behavioural, ventilatory and metabolic responses to severe hypoxia and subsequent recovery of the hypogean Niphargus rhenorhodanensis and the epigean Gammarus fossarum (Crustacea: Amphipods). Physiol. Zool. 68: 223–244.

    Google Scholar 

  • Hervant, F., J. Mathieu, H. Barre, K. Simon & C. Pinon, 1997a. Comparative study on the behavioural, ventilatory and respiratory responses of hypogean and epigean crustaceans to long-term starvation and subsequent feeding. Comp. Biochem. Physiol. 118A: 1277–1283.

    Article  CAS  Google Scholar 

  • Hoback, W. W. & M. C. Barnhart, 1996. Lethal limits and sublethal effects of hypoxia on Gammarus pseudolimnaeus Bousfield (Amphipoda, Crustacea). J. N. Am. Benthol. Soc. 15: 117–125.

    Article  Google Scholar 

  • Kramer, D., 1982. Aquatic surface respiration in the fishes of Panama: distribution in relation to risk of hypoxia. Envir. Biol. Fishes 8: 49–54.

    Article  Google Scholar 

  • Lacoursiere, J. & D. Craig, 1990. A small flume for studying the influence of hydrodynamic factors on benthic invertebrate behaviour. J. N. Am. Benthol. Soc. 9: 358–367.

    Article  Google Scholar 

  • Marmonier, P. and M. Creuzé des Châtelliers, 1991. Effects of spates on interstitial assemblages of the Upper Rhône River. Hydrobiologia 210: 243–251.

    Article  Google Scholar 

  • Marmonier, P. & M-J. Dole, 1986. Interstitial amphipods of a by-passed section of the Rhone river: distribution patterns and reaction to spates. Sci. Eau 5: 461–486.

    Google Scholar 

  • Meijering, M. P. D., 1972. Experimentelle Untersuchungen zur Drift und Aufwanderung von Gammariden in Fließgewässern. Arch. Hydrobiol. 70: 133–205.

    Google Scholar 

  • Meijering, M. P. D., 1989. Immissionsbelastung des Waldes und seiner Böden-Gefahr für die Gewässer? Deutsch. Verband Wasserwirtsch. Kulturb. 17: 369–381.

    Google Scholar 

  • Meijering, M. P. D., 1991. Lack of oxygen and low pH as limiting factors for Gammarus in Hessian brooks and rivers. Hydrobiologia 223: 159–169.

    Article  Google Scholar 

  • Nebeker, A., 1972. Effect of low oxygen concentration on survival and emergence of aquatic insects. Trans. am. Fish. Soc. 4: 675–679.

    Article  Google Scholar 

  • Nebeker, A., S. Onjukka, D. Stevens, G. Chapman & S. Dominguez, 1992. Effects of low dissolved oxygen on survival, growth and reproduction of Daphnia, Hyalella and Gammarus. Envir. Tox. Chem. 11: 373–379.

    CAS  Google Scholar 

  • Newman, M. C., 1994. Quantitative Methods in Aquatic Ecotoxicology. CRC Press, Boca Raton, 426 pp.

    Google Scholar 

  • Negrea, S. & P. Pospisil, 1995. Contribution a la connaissance des Cladoceres des eaux souterraines du Danube a Vienne. Annls. Limnol. 31: 169–178.

    Article  Google Scholar 

  • Otto, C., 1998. Factors affecting the disjunct distribution of amphipods along a North Swedish river. Oikos 83: 21–28.

    Google Scholar 

  • Palmer, M. A., 1990. Understanding the movement dynamics of a steam-dwelling meiofauna community using marine analogs. Stygologia 5: 67–74.

    Google Scholar 

  • Palmer, M. A., 1992. Incorporating lotic meiofauna into our understanding of faunal transport processes. Limnol. Oceanogr. 37: 329–341.

    Article  Google Scholar 

  • Palmer, M. A., J. D. Allan & C. A. Butman, 1996. Dispersal as a regional process affecting the local dynamics of marine and stream benthic invertebrates. Trends Ecol. Evol. 11: 322–326.

    Article  Google Scholar 

  • Palmer, M. A., A. E. Bely & K. E. Berg, 1992. Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis. Oecologia 89: 182–194.

    Google Scholar 

  • Pöckl, M., 1992. Effects of temperature, age and body size on moulting and growth in the freshwater amphipods Gammarus fossarum and G. roeseli. Freshwat. Biol. 27: 211–225.

    Article  Google Scholar 

  • Pöckl, M., 1993. Reproductive potential and lifetime potential fecundity of the freshwater amphipods Gammarus fossarum and G. roeseli in Austrian streams and rivers. Freshwat. Biol. 30: 73–91.

    Article  Google Scholar 

  • Pospisil, P., 1994. Die Grundwassercyclopiden (Crustacea, Copepoda) der Lobau in Wien (Österreich) faunistische, taxonomische und ökologische Untersuchungen. Ph.D. Thesis, Univ. of Vienna, 222 pp.

  • Pospisil, P., D. L. Danielopol & J. E. Dreher, 1994. Measuring dissolved oxygen in simple and multi-level wells. In J. A. Stanford & H. M. Valett (eds), Proceedings of the Second International Conference on Ground Water Ecology. American Water Resources Association, Herndon: 57–64.

    Google Scholar 

  • Robertson, A., J. Lancaster & A. G. Hildrew, 1995. Stream hydraulics and the distribution of microcrustacea: A role for refugia? Freshwat. Biol. 33: 469–484.

    Article  Google Scholar 

  • Roux, C., 1982. Les variations du métabolisme respiratoire et de l'activité de quelques invertébrés dulçaquicoles sous l'influence de divers facteurs écologiques. Ph.D. Thesis, Univ. Claude-Bernard Lyon I, 159 pp.

  • Roux, C. & A. L. Roux, 1980. Repartition ecologique et metabolisme respiratoire de Gammarus Roeseli Gervais 1835. Crustaceana, Suppl. 6: 148–159.

    Google Scholar 

  • Rutledge, C. & T. Beitinger, 1989. The effects of dissolved oxygen and aquatic surface respiration on the critical thermal maxima of three intermittent-stream fishes. Envir. Biol. Fishes 24: 137–143.

    Article  Google Scholar 

  • Schaefer, M. & W. Tischler, 1983. Oekologie. Gustav Fischer Varlag. Stuttgart, 314 pp.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry: The Principles and Practice in Biological Research. 3rd edition. W. H. Freeman and Co., New York, 789 pp.

    Google Scholar 

  • Starry, O., J. Wanzenboeck & D. L. Danielopol, 1998. Tendency of the amphipod Gammarus roeseli Gervais to colonize coarse sediment habitats under fish predation pressure. Int. Rev. ges. Hydrobiol. 83: 371–380.

    Google Scholar 

  • Strayer, D. L., 1994. Limits to biological distributions in groundwater. In J. Gibert, D. L. Danielopol & J. A. Stanford (eds), Groundwater Ecology. Academic Press, San Diego: 287–310.

    Google Scholar 

  • Vobis, H., 1973. Rheotaktisches Verhalten einiger Gammarus-Arten bei verschiedenem Sauerstoffgehalt des Wassers. Helgoländer wiss. Meeresunters 25: 495–508.

    Article  Google Scholar 

  • Williams, D. D. & K. A. Moore, 1985. The role of semiochemicals in benthic community relationships of the lotic amphipod Gammarus pseudolimnaeus: a laboratory analysis. Oikos 44: 280–286.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henry, K.S., Danielopol, D.L. Oxygen dependent habitat selection in surface and hyporheic environments by Gammarus roeseli Gervais (Crustacea, Amphipoda): experimental evidence. Hydrobiologia 390, 51–60 (1998). https://doi.org/10.1023/A:1003541300460

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003541300460

Navigation