, Volume 391, Issue 1–3, pp 221–238 | Cite as

Optimal foraging as the criteria of prey selection by two centrarchid fishes

  • Jagath Manatunge
  • Takashi Asaeda


The nature of prey selection by two centrarchids (white crappie and bluegill) is presented as a model incorporating optimal foraging strategies. The visual field of the foraging fish as represented by the reactive distance is analysed in detail to estimate the number of prey encounters per search bout. The predicted reactive distances are compared with experimental data. The energetic cost associated with fish foraging behaviour is calculated based on the sequence of events that takes place for each prey consumed. Comparisons of the relative abundance of prey species and size categories in the stomach to the lake environment indicated that both white crappie and bluegill (length < 100 mm) strongly select prey utilising an energy optimization strategy. In most cases, the fish exclusively selected large Daphnia ignoring evasive prey types (Cyclops, Diaptomids) and small cladocera. This selectivity is the result of fish actively avoiding prey with high evasion capabilities even though they appear to be high in energetic content and having translated this into optimal selectivity through capture success rates. The energy consideration and visual system, apart from the forager's ability to capture prey, are the major determinants of prey selectivity for large-sized bluegill and white crappie still at planktivorous stages.

bluegill sunfish optimal foraging prey selectivity reactive distance visual foraging white crappie 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aksnes, D. L. & J. Giske, 1993. A theoretical model of aquatic visual feeding. Ecol. Modelling 67: 233-250.Google Scholar
  2. Beamish, F. W. H., 1978. Swimming Capacity. In Hoar, W. S. & D. J. Randall (eds), Fish Physiology, vol.7, Academic Press, New York: 102-187.Google Scholar
  3. Breck, J. E. & M. I. Gitter, 1983. Effect of fish size on the reactive distance of bluegill (Lepomis macrochirus) sunfish. Can. J. Fish. aquat. Sci. 40: 162-167.Google Scholar
  4. Breck, J. E., 1993. Foraging theory and piscivorous fish. Trans. am. Fish. Soc. 122: 902-911.Google Scholar
  5. Browman, H. I. & W. J. O'Brien, 1992a. The ontogeny of search behaviour in the white crappie, Pomoxis annularis. Envir. Biol. Fishes 34: 181-195.Google Scholar
  6. Browman, H. I. & W. J. O'Brien, 1992b. Foraging and prey search behaviour of golden shiner (Notemigonus crysoleucas) larvae. Can. J. Fish. aquat. Sci. 49: 813-819.Google Scholar
  7. Charnov, E. L., 1976. Optimal foraging: The marginal value theorem. Theoretical Population Biology 9: 129-136.Google Scholar
  8. Confer, J. L. & P. I. Blades, 1975. Omnivorous zooplankton and planktivorous fish. Limnol. Oceanogr.20 (4): 571-579.Google Scholar
  9. Culver, D. A., M. M. Boucherle, D. J. Bean & J. W. Fletcher, 1985. Biomass of freshwater crustacean zooplankton from lengthweight regressions. Can. J. Fish. aquat. Sci. 42: 1380-1390.Google Scholar
  10. Douglas, R. H. & C. W. Hawryshyn, 1990. Behavioural studies of fish vision: an analysis of visual capabilities. In Douglas, R.H. & M. Djamgoz (eds), The Visual System of Fish, Chapman & Hall, London: 373-418.Google Scholar
  11. Drenner, R.W., J. R. Strickler & W. J. O'Brien, 1978. Capture probability: The role of zooplankton escape in the selective feeding of planktivorous fish. J. Fish. Res. Bd Can. 35: 1370-1373.Google Scholar
  12. Drenner, R. W. & S. R. McCommas, 1980. The role of zooplankter escape and fish size selectivity in the selective feeding and impact of planktivorous fish. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities, The University Press of New England, Hanover, New Hampshire: 587-593.Google Scholar
  13. Easter, S. S., J. R., P. R. Johns & L. R. Baumann, 1977. Growth of the adult goldfish eye-I. Optics. Vision Res. 17: 469-477.Google Scholar
  14. Eggers, D. M., 1977. The nature of prey selection by planktivorous fish. Ecology 58: 46-59.Google Scholar
  15. Ehlinger, T. J., 1989. Learning and individual variation in bluegill foraging: habitat specific techniques. Anim. Behav. 38: 643-658.Google Scholar
  16. Ehlinger, T. J. & D. S. Wilson, 1988. Complex foraging polymorphism in bluegill sunfish. Proc. natn. Acad. Sci. U.S.A. 85: 1878-1882.Google Scholar
  17. Eiane, K., D. L. Aksnes & J. Giske, 1997. The significance of optical properties in competition among visual and tactile planktivores: a theoretical study. Ecol. Modelling 99: 123-136.Google Scholar
  18. Elliot, J. M., 1976. The energetics of feeding, metabolism and growth of brown trout (Salmo trutta) in relation to body weight, water temperature and ration size. J. anim. Ecol. 45: 923-948.Google Scholar
  19. Evans, B. I. & W. J. O'Brien, 1988. A re-analysis of the search cycle of a planktivorous salmonoid. Can. J. Fish. aquat. Sci. 45: 187-192.Google Scholar
  20. Graham, D.M. & W. G. Sprules, 1992. Size and species selection of zooplankton by larval and juvenile walleye (Stizostedion vitreum vitreum) in Oneida Lake, New York. Can. J. Zool. 70: 2059-2067.Google Scholar
  21. Gerritsen, J. & J. R. Strickler, 1977. Encounter probabilities and community structure in zooplankton. J. Fish. Res. Bd Can. 34: 73-82.Google Scholar
  22. Gliwicz, Z. M. & J. Pijanowska, 1989. The role of predation in zooplankton succession. In U. Sommer (ed.), Plankton Ecology: Succession in Planktonic Community. Springer, Berlin: 253-296.Google Scholar
  23. Holling, C. S., 1966. The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Can. 48: 1-86.Google Scholar
  24. Hughes, N. F. & J. M. Kelly, 1996. A hydrodynamic model for estimating the energetic cost of swimming maneuvers from a description of their geometry and dynamics. Can. J. Fish. aquat. Sci. 53: 2484-93.Google Scholar
  25. Janssen, J., 1982. Comparison of searching behaviour for zooplankton in an obligate planktivore, blueback herring (Alosa aestivalis) and a facultative planktivore, bluegill (Lepomis macrochirus). Can. J. Fish. aquat. Sci. 39(12): 1649-1654.Google Scholar
  26. Jörgensen, S. E., S. N. Nielsen & L. A. Jörgensen, 1992. Handbook of ecological parameters and ecotoxicology. Elsevier: 265-267.Google Scholar
  27. Lazzaro, X., 1987. A review of planktivorous fishes: Their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia 146: 97-167.Google Scholar
  28. Letcher, B. H., J. A. Rice, L. B. Crowder & K. A. Rose, 1996. Variability in survival of larval fish: disentangling components with an individual based model. Can. J. Fish. aquat. Sci. 53: 787-801.Google Scholar
  29. Li, K. T., J. K. Wetterer & N. G. Hairston, Jr., 1985. Fish size, visual resolution, and prey selectivity. Ecology 66(6): 1729-1735.Google Scholar
  30. Mills, E. L., J. L. Confer & R. C. Ready, 1984. Prey selectivity by young yellow perch: the influence of capture success, visual acuity, and prey choice. Trans. am. Fish Soc. 113: 579-587.Google Scholar
  31. Mills, E. L., J. L. Confer & D. W. Kretchmer, 1986. Zooplankton selection by Young yellow perch: The influence of light, prey density, and predator size. Trans. am. Fish. Soc. 115: 716-725.Google Scholar
  32. Mittelbach, G. G., 1981. Foraging efficiency and body size: A study of optimal diet and habitat use by bluegills. Ecology 62(5): 1370-1386.Google Scholar
  33. Neumann, R. M. & B. R. Murphy, 1991. Evaluation of the relative weight (W r) index of white crappie and black crappie populations. North American J. Fisheries Management 11: 543-555.Google Scholar
  34. O'Brien, W. J., 1987. Planktivory by Freshwater Fish: Thrust and Parry in the Pelagia. In W.C. Kerfoot & A. Sih (eds), Predation, Direct and Indirect Impacts on Aquatic Communities. The University Press of New England, Hanover, New Hampshire: 3-16.Google Scholar
  35. O'Brien, W. J., & B. I. Evans, 1991. Saltatory search behaviour in five species of planktivorous fish. Verh. int. Ver. Limnol. 24: 2371-2376.Google Scholar
  36. O'Brien, W. J., & B. I. Evans, 1992. Simulation model of the planktivorous feeding of arctic grayling: laboratory and field verification. Hydrobiologia 240: 235-245.Google Scholar
  37. O'Brien, W. J., N. A. Slade & G. L. Vinyard, 1976. Apparent size as the determinant of prey selection by bluegill sunfish (Lepomis macrochirus). Ecology 57: 1304-1310.Google Scholar
  38. O'Brien, W. J., B. I. Evans & H. I. Browman, 1989. Flexible search tactics and efficient foraging in planktivorous fish. Oecologia 80: 100-110.Google Scholar
  39. O'Brien, W. J., H. I. Browman & B. I. Evans, 1990. Search strategies in foraging animals. Am. Sci. 78: 152-160.Google Scholar
  40. Peterson, J. H. & D. L. DeAngelis, 1992. Functional response and capture timing in an individual-based model: predation by northern squawfish (Ptychocheilus oregonensis) on juvenile salmonoids in the Columbia River. Can. J. Fish. aquat. Sci. 49: 2551-2565.Google Scholar
  41. Powers, M. R. & S. S. Easter, 1978. Absolute visual sensitivity of the goldfish. Vision Res. 18: 1137-1147.Google Scholar
  42. Powers, M. K., C. J. Bassi, A. R. Lisa & P. A. Raymond, 1988. Visual detection by the rod system in goldfish of different sizes. Vision Res. 28(2): 211-222.Google Scholar
  43. Stewart, D. J. & F. P. Binkowski, 1986. Dynamics of consumption and food conversion by Lake Michigan alewives: An energeticsmodeling synthesis. Trans. am. Fish. Soc. 115: 643-661.Google Scholar
  44. Swift, M. C. & A. Y. Fedorenko, 1975. Some aspects of prey capture by Chaoborus larvae. Limnol. Oceanogr. 20: 418-425.Google Scholar
  45. Townsend, C. R. & I. J. Winfield, 1985. The application of optical foraging theory to feeding behaviour in fish. In P. Tyler & P. Calow (eds), Fish Energetics: New Perspectives. Johns Hopkins University Press, Baltimore, Maryland: 67-98.Google Scholar
  46. Vinyard, G. L. & W. J. O'Brien, 1976. Effects of light and turbidity on the reactive distance of bluegill sunfish (Lepomis machrochirus). J. Fish. Res. Bd Can. 33: 2845-2849.Google Scholar
  47. Walton, W. E., N. G. Hairston, Jr. & J. K. Wetterer, 1992. Growthrelated constraints on diet selection by sunfish. Ecology 73(2): 429-437.Google Scholar
  48. Walton, W. E., S. S. Easter, C. Malinowski & N. G. Hairston, Jr., 1994. Size-related change in the visual resolution of sunfish (Lepomis spp.). Can. J. Fish. aquat. Sci. 51: 2017-2026.Google Scholar
  49. Ware, D. M., 1973. Risk of epibenthic prey to predation by rainbow trout (Salmo gairdneri). J. Fish. Res. Bd Can. 30: 787-797.Google Scholar
  50. Werner, E. E. & D. J. Hall, 1974. Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology 55: 1042-1052.Google Scholar
  51. Werner, E. E., G. G. Mittelbach & D. J. Hall, 1981. The role of foraging profitability and experience in habitat use by bluegill sunfish. Ecology 62(1): 116-125.Google Scholar
  52. Witherspoon, N., M. Strand, J. Holloway, B. Price, D. Brown, R. Miller & L. Estep, 1988. Experimentally measured MTFs associated with imaging through turbid water. Ocean Optics 9: 363-368.Google Scholar
  53. Wohlschlag, D. E. & R. O. Juliano, 1959. Seasonal changes in bluegill metabolism. Limnol. Oceanogr. 4: 195-209.Google Scholar
  54. Wright, D. I. & W. J. O'Brien, 1984. The development and field test of a tactical model of the planktivorous feeding of white crappie (Pomoxis annuaris). Ecol. Monogr. 54: 65-98.Google Scholar
  55. Wright, D., W. J. O'Brien & G. L. Vinyard, 1980. Adaptive value of vertical migration: A simulation model for the predation hypothesis. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities, University Press of New England, Hanover, New Hampshire: 138-147.Google Scholar
  56. Zaneveld, J. R., R. W. Spinrad & R. Bartz, 1979. Optical properties of turbidity standards. Ocean Optics 7: 157-168.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Jagath Manatunge
    • 1
  • Takashi Asaeda
    • 1
  1. 1.Department of Environmental Science & Human TechnologySaitama UniversityUrawashi, SaitamaJapan

Personalised recommendations