Skip to main content
Log in

Comparative responses to severe hypoxia and subsequent recovery in closely related amphipod populations (Gammarus minus) from cave and surface habitats

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The locomotory and ventilatory activities, oxygen consumption, and the intermediary and energy metabolism modifications of a spring and a cave population of the aquatic amphipod crustacean Gammarus minus were investigated in normoxia, severe hypoxia (\(P_{{\text{O}}_{\text{2}} } \) < 0.03 kPa) and subsequent recovery. The aims of this study were to compare (1) the reactions of both populations to these experimental conditions, (2) these results with those obtained on the hypogean amphipod Niphargus, and (3) the degree of adaptation to hypoxia showed by both populations of G. minus. Despite their different origins, both populations of G. minus presented identical responses in all experimental conditions. The lethal time for 50% of the population was about 6 h, and the oxygen consumption about 44 μmol O2/g dw per h in normoxic conditions. The metabolic effects of severe hypoxia and subsequent recovery were significant compared to normoxic conditions, but also similar between both populations for alanine, arginine phosphate, ATP, glycogen and lactate levels. This study (i) underlines the statement that a high resistance to lack of oxygen is not universally found in subterranean organisms, but is more related to oxygen availability and/or to the energetic state of each subterranean ecosystem, and (ii) highlight the diversity of adaptive responses to an environmental constraint expressed by hypogean crustaceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahearn, G. A. & F. G. Howarth, 1982. Physiology of cave arthropods in Hawaii. J. Exp. Zool. 222: 227–238.

    Article  Google Scholar 

  • Allan, J. D., 1995. Stream Ecology. Structure and Function of Running Waters. Chapman and Hall, London.

    Google Scholar 

  • Barr, T. C., 1968. Cave ecology and the evolution of troglobites. In Dobzhansky, T. (ed.), Evolutionary Biology, Vol. 2. North Holland, Amsterdam: 35–102.

    Google Scholar 

  • Bergmeyer, H. U., 1985. Methods of enzymatic analysis. In Bergmeyer, H. U. (ed.), Vols. VI–VIII. Basel: Verlag Chemie, Weinheim.

    Google Scholar 

  • Courbon, P., C. Chabert, P. Bosted, & K. Lindsley, 1989. Atlas of the Great Caves of the World. Cave Books, St. Louis.

    Google Scholar 

  • Culver, D. C. & T. L. Poulson, 1971. Oxygen consumption and activity in closely related amphipod populations from cave and surface habitats. Am. Midl. Nat. 85: 74–84.

    Article  Google Scholar 

  • Culver, D. C., T. C. Kane & D. W. Fong, 1995. Adaptation and Natural Selection in Caves. The Evolution of Gammarus minus. Harvard University Press, Cambridge, London: 1–223.

    Google Scholar 

  • Danielopol, D. L., 1997. La colonisation d'environnements contraignants – Exemple des eaux souterraines. Géobios, M. S. 21: 55–66.

    Article  Google Scholar 

  • Danielopol, D. L. & R. Rouch, 1991. L'adaptation des organismes au milieu aquatique souterrain. Réflexions sur l'apport des recherches écologiques récentes. Stygologia 6: 129–142.

    Google Scholar 

  • Danielopol, D. L., J. Dreher, A. Gunatilaka, M. Kaiser, R. Niederreiter, P. Pospisil, M. Creuzé des Chatelliers & A. Richter, 1992. Ecology of organisms living in a hypoxic groundwater environment at Vienna (Austria); methodological questions and preliminary results. In Simon, J. & J. A. Stanford (eds), Proc. First Int. Conf. Ground-Water Ecology. US EPA, AWRA, Washington, DC: 79–90.

    Google Scholar 

  • De Zwaan, A. & H. R. Skjoldal, 1979. Anaerobic energy metabolism of the scavenging isopod Cirolana borealis (Lilljeborg). J. Comp. Physiol. 129B: 327–331.

    Google Scholar 

  • Ellington, W. R., 1983. The recovery from anaerobic metabolism in invertebrates. J. Exp. Zool. 228: 431–444.

    Article  CAS  Google Scholar 

  • Gibert, J., P. Vervier, F. Malard, R. Laurent & J. L. Reygrobellet, 1994. Dynamics of communities and ecology of karst ecosystems: exemple of three karsts in Eastern and Southern France. In Gibert, J., D. L. Danielopol & J. A. Stanford (eds), Groundwater Ecology. Academic Press, San Diego: 425–450.

    Google Scholar 

  • Hamilton, M. A., R. C. Russo & R. V. Thurston, 1977. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 11: 714–719.

    Article  CAS  Google Scholar 

  • Henry, K. S. & D. L. Danielopol, 1999. Oxygen-dependent habitat selection in surface and hyporheic environments by Gammarus roeseli Gervais (Crustacea, Amphipoda): experimental evidence. Hydrobiologia 390: 51–60.

    Article  Google Scholar 

  • Herreid, C. F., 1980. Hypoxia in invertebrates. Comp. Biochem. Physiol. 67A: 311–320.

    CAS  Google Scholar 

  • Hervant, F., J. Mathieu, D. Garin & A. Fréminet, 1995. Behavioral, ventilatory and metabolic responses to severe hypoxia and subsequent recovery of the hypogean Niphargus rhenorhodanensis and the epigean Gammarus fossarum (Crustacea: Amphipoda). Physiol. Zool. 68: 223–244.

    Google Scholar 

  • Hervant, F., J. Mathieu, D. Garin & A. Fréminet, 1996. Behavioral, ventilatory and metabolic responses of the hypogean amphipod Niphargus virei and the epigean isopod Asellus aquaticus to severe hypoxia and subsequent recovery. Physiol. Zool. 69: 1277–1300.

    Google Scholar 

  • Hervant, F., J. Mathieu & G. Messana, 1997a. Locomotory, ventilatory and metabolic responses of the subterranean Stenasellus virei (Crustacea: Isopoda) to severe hypoxia and subsequent recovery. C. R. Acad. Sci. Paris (Sciences de la vie) 320: 139–148.

    CAS  Google Scholar 

  • Hervant, F., J. Mathieu, H. Barré, K. Simon & C. Pinon, 1997b. Comparative study on the behavioral, ventilatory and respiratory responses of hypogean and epigean crustaceans to long-term starvation and subsequent feeding. Comp. Biochem. Physiol. 118A: 1277–1283.

    Article  CAS  Google Scholar 

  • Hervant, F., J. Mathieu & G. Messana, 1998. Oxygen consumption and ventilation in declining oxygen tension and posthypoxic recovery in epigean and hypogean aquatic crustaceans. J. Crust. Biol. 18: 717–727.

    Article  Google Scholar 

  • Hervant, F., D. Garin, J. Mathieu & A. Fréminet, 1999. Lactate metabolism and glucose turn-over in the subterranean Niphargus virei (Crustacea: amphipoda) during post-hypoxic recovery. J. Exp. Biol. 202(5): 579–592.

    PubMed  CAS  Google Scholar 

  • Humphreys, W. F. & G. Collis, 1990. Water loss and respiration of cave arthropods from Cape Range, Western Australia. Comp. Biochem. Physiol. 95A: 101–107.

    Article  Google Scholar 

  • Hüppop, K., 1985. The role of metabolism in the evolution of cave animals. Bull. Natl. Speleol. Soc. 47: 136–146.

    Google Scholar 

  • Hüppop, K., 1986. Oxygen consumption of Astyanax fasciatus (Characidae, Pisces): a comparison of epigean and hypogean populations. Environ. Biol. Fish. 17: 299–308.

    Article  Google Scholar 

  • Malard, F. & F. Hervant, 1999. Oxygen in groundwater: a critical factor for life? Freshwat. Biol. 41(1): 1–30.

    Article  Google Scholar 

  • Mösslacher, F. & M. Creuzé des Châtelliers, 1996. Physiological and behavioural adaptations of an epigean and a hypogean dwelling population of Asellus aquaticus (L.) (Crustacea, Isopoda). Arch. Hydrobiol. 138: 187–198.

    Google Scholar 

  • Poulson, T. L., 1964. Animals in aquatic environments: animals in caves. In Dill, D. B. (ed.), Handbook of Physiology. Adaptation to the Environment, Sect. 4. Williams and Wilkins, Baltimore: 749–771.

    Google Scholar 

  • Sarbu, S. M., T. C. Kane & B. Kinle, 1996. A chemoautotrophically based cave ecosystem. Science 272: 1953–1955.

    PubMed  CAS  Google Scholar 

  • Schlagel, S. R. & C. M. Breder, 1947. A study of the oxygen consumption of blind and eyed cave characins in light and in darkness. Zoologica (New York) 32: 17–27.

    Google Scholar 

  • Thinès, G., 1969. L'évolution régressive des Poissons cavernicoles et abyssaux. Masson et Cie, Paris: 285 pp.

    Google Scholar 

  • Vandel, A., 1964. Biospéologie. La biologie des animaux cavernicoles. Gauthier-Villars, Paris: 619 pp.

    Google Scholar 

  • Zebe, E., 1982. Anaerobic metabolism in Upogebia pugettensis and Callianassa californiensis (Crustacea Thalassinidea). Comp. Biochem. Physiol. 72B: 613–617.

    CAS  Google Scholar 

  • Zebe, E., 1991. Arthropodes. In Bryant, C. (ed.), Metazoan Life without Oxygen. Chapman and Hall, London: 218–237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Hervant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hervant, F., Mathieu, J. & Culver, D.C. Comparative responses to severe hypoxia and subsequent recovery in closely related amphipod populations (Gammarus minus) from cave and surface habitats. Hydrobiologia 392, 197–204 (1999). https://doi.org/10.1023/A:1003511416509

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003511416509

Navigation