Skip to main content
Log in

Immunohistochemical Video-microdensitometry of Myocardial Collagen Type I and Type III

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

Collagen is an essential part of the cardiac interstitium. Collagen subtypes, their location, total amount and the architecture of the fibrillar network are of functional importance. Architecture in terms of density of the fibrillar network is assumed to be reflected by the intensity of immunohistochemical staining of collagen. The aim of this study was to evaluate a video-based microdensitometric method for quantifying density expressed as absorbance of collagen subtypes I and III stained with an indirect immunoperoxidase method in myectomy specimens of patients with hypertrophic obstructive cardiomyopathy. Various factors influencing the immunohistochemical staining product and the technical properties of the image analysis system were investigated. Linearity between collagen concentration and the absorbance of the immunohistochemical staining product was demonstrated for collagen I using a dot-blot technique. Immunohistochemical collagen staining and density measure ment were easily reproducible. The cardiac disability of the patients was assessed according to the New York Heart Association (NYHA) criteria. There was a significant increase in collagen type I density with higher NYHA class, whereas no significant association was found for total collagen area fraction. Thus, video-based microdensitometry gives further insight into the structural remodelling of myocardial collagens and reveals their significance in the process of heart failure in hypertrophic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burton, A.C. (1954) Relation of structure to function of the tissues of the wall of blood vessels. Physiol. Rev. 34, 619-42.

    Google Scholar 

  • Caulfield, J.B. & Borg, T.K. (1979) The collagen network of the heart. Lab. Invest. 40, 364-72.

    Google Scholar 

  • Chieco, P., Jonker, A., Melchiorri, C., Vanni, G. & van Noorden, C.J.F. (1994) A user's guide for avoiding errors in absorbance image cytometry: a review with original experimental observations. Histochem. J. 26, 1-19.

    Google Scholar 

  • Factor, S.M., Butany, J., Sole, M. J. & Wigle, D. (1991) Pathologic fibrosis and matrix connective tissue in the subaortic myocardium of patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 17, 1343-51.

    Google Scholar 

  • Frank, J.S. & Langer, G.A. (1974) The myocardial interstitium: its structure and its role in ionic exchange. J. Cell. Biol. 60, 586-601.

    Google Scholar 

  • Fritz, P., Multhaupt, H., Hoenes, J., Lutz, D., Doerrer, R., Schwarzmann, P., et al. (1992) Quantitative Immunohistochemistry - Theoretical Background and its Application in Biology and Surgical Pathology. Stuttgart: Gustav Fischer Verlag.

    Google Scholar 

  • Hufnagl, P., Guski, H., Meyer, R., et al. (1989) Comparison of conventional morphometry and image analysis for the solution of histomorphometric problems. Gegenbaurs Morphol. Jahrb. 135, 145-50.

    Google Scholar 

  • Isoyama, S., Ito, N., Satoh, K. & Takishima, T. (1992) Collagen deposition and the reversal of coronary reserve in cardiac hypertrophy. Hypertension 20, 491- 500.

    Google Scholar 

  • Junqueira, L.C.U., Bignolas, G. & Brentani, R.R. (1979) A simple and sensitive method for the quantitative estimation of collagen. Anal. Biochem. 94, 96-99.

    Google Scholar 

  • Laurent, G. J., Cockerill, P., Mcanulty, R. J. & Hastings, J.R.B. (1981) A simplified method for quantitation of the relative amounts of type I and type III collagen in small tissue samples. Anal. Biochem. 113, 301-12.

    Google Scholar 

  • Makkink-Nombrado, S.V., Baak, J.P., Schuurmans, L., Theeuwes, J.W. & Aa, T. van der (1995) Quantitative immunohistochemistry using the CAS 200/486 image analysis system in invasive breast carcinoma: a reproducibility study. Anal. Cell. Pathol. 8, 227-45.

    Google Scholar 

  • Mathieu, O., Cruz-Orive, L.M., Hoppeler, H., et al. (1981) Measuring error and sampling variation in stereology: comparison of the efficiency of various methods for planar image analysis. J. Microsc. 121, 75-88.

    Google Scholar 

  • Millar, D.A. & Williams, E.D. (1982) A step-wedge standard for the quantification of immunoperoxidase techniques. Histochem. J. 14, 609-20.

    Google Scholar 

  • Mundhenke, M., Boerrigter, G., Stark, P., Schulte, H.D. & Schwartzkopff, B. (1997) Abnormal myocardial collagen determines diastolic dysfunction early after transaortic subvalvular myectomy (TSM) in patients with hypertrophic obstructive cardiomyopathy (HOCM). Circulation, 96 (Suppl. I), 3614 (abstract).

    Google Scholar 

  • Nibbering, P.H. & van Furth, R. (1987) Microphotometric quantitation of the reaction product of several indirect immunoperoxidase methods demonstrating monoclonal antibody binding to antigens immobilized on nitrocellulose. J. Histochem. Cytochem. 35, 1425-31.

    Google Scholar 

  • Nibbering, P.H., Marijnen, J.G. J., Raap, A.K., Leijh, P.C.J. & van Furth, R. (1986) Quantitative study of enzyme immunocytochemical reactions performed with enzyme conjugates immobilized on nitrocellulose. Histochemistry, 84: 538-43.

    Google Scholar 

  • Pertschuk, L.P., Feldman, J.G., Kim, Y.D., Braithwaite, L., Schneider, F., Braverman, A.S., et al. (1996) Estrogen receptor immunocytochemistry in paraffin embedded tissues with ER1D5 predicts breast cancer endocrine response more accurately than 222Spγ in frozen sections or cytosolbased ligand-binding assays. Cancer 77, 2514-19.

    Google Scholar 

  • Raivich, G., Gehrmann, J., Graeber, M.B. & Kreutzberg, G.W. (1993) Quantitative immunohistochemistry in the rat facial nucleus with I-125-iodinated secondary antibodies and in situ autoradiography: nonlinear binding characteristics of primary monoclonal and polyclonal antibodies. J. Histochem. Cytochem. 41, 579-92.

    Google Scholar 

  • Schwartz, K., Carrier, L., Guicheney, P. & Komajda, M. (1995) Molecular basis of familial cardiomyopathies. Circulation 91, 532-40.

    Google Scholar 

  • Schwartzkopff, B., Ühre, B., Ehle, B., LÖ sse, B. & Frenzel, H. (1987) Variability and reproducibility of morphologic findings in endomyocardial biopsies in hypertrophic obstructive cardiomyopathy. Z. Kardiol. 76(Suppl. 3), 14-19.

    Google Scholar 

  • Schwartzkopff, B., Dieckerhoff, J., Frenzel, H., Schulte, H.D., LÖ sse, B., Motz, W., Bircks, W., Hort, W. & Strauer, B.E. (1992) Dysplastic intramyocardial arteries in the subaortic septum of patients with hypertrophic-obstructive cardiomyopathy. Z. Kardiol. 81, 456-63.

    Google Scholar 

  • Schwartzkopff, B., Motz, W. & Strauer, B.E. (1993) Structural changes of the myocardium and the coronary microvessels in hypertensive heart disease. High Blood Press. 2, 107-13.

    Google Scholar 

  • Schwartzkopff, B., Stark, P., Schulte, H.D., Mundhenke, M., Klein, R.M., LÖ sse, B., Vester, E.G. & Strauer, B.E. (1997) Early changes in systolic and diastolic function at rest and under exercise in patients with hypertrophic cardiomyopathy (HOCM) after myectomy. Z. Kardiol. 86, 438-49.

    Google Scholar 

  • Sternberger, L.A. & Sternberger, N.H. (1986) The unlabeled antibody method: comparison of peroxidase -antiperoxidase with avidin-biotin complex by a new method of quantification. J. Histochem. Cytochem. 34, 599-605.

    Google Scholar 

  • Tanaka, M., Fuj iwara, H., Onodera, T., Wu, D.-J., Hamashima, Y. & Kawai, C. (1986) Quantitative analysis of myocardial fibrosis in normals, hypertensive hearts, and hypertrophic cardiomyopathy. Br. Heart J. 55, 575-81.

    Google Scholar 

  • van den Berg, F.M., Baas, I.O., Polak, M.M. & Offerhaus, J.A. (1993) Detection of p53 overexpression in routinely paraffin-embedded tissue of human carcinomas using a novel target unmasking fluid. Am. J. Pathol. 142, 381-5.

    Google Scholar 

  • van der Loos, C.M., Marijianowski, M.M.H. & Becker, A.E. (1994) Quantification in immunochemistry: the measurement of the ratios of collagen types I and III. Histochem. J. 26, 347-54.

    Google Scholar 

  • Villari, B., Campbell, S.E., Hess, O.M., Mall, G., Vassalli, G., Weber, K.T., et al. (1993) Influence of collagen network on left ventricular systolic and diastolic function in aortic valve disease J. Am. Coll. Cardiol. 22, 1477-84.

    Google Scholar 

  • Watanabe, J., Asaka, Y., Tanaka, T. & Kanamura, S. (1994) Measurement of NADPH-cytochrome P-450 reductase content in rat liver sections by quantitative immunohistochemistry with a video image processor. J. Histochem. Cytochem. 42, 1161-7.

    Google Scholar 

  • Weber, K.T., Sun, Y., Tyagi, S.C. & Cleutjens, J.P.M. (1994) Collagen network of the myocardium: function, structural remodelling and regulatory mechanisms. J. Mol. Cell. Cardiol. 26, 279-92.

    Google Scholar 

  • Wigle, E.D., Rakowski, H., Kimball, B.P. & Williams, W.G. (1995) Hypertrophic cardiomyopathy: clinical spectrum and treatment. Circulation 92, 1680-92.

    Google Scholar 

  • Zak, R. (1973) Cell proliferation during cardiac growth. Am. J. Cardiol., 31, 211–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boerrigter, G., Mundhenke, M., Stark, P. et al. Immunohistochemical Video-microdensitometry of Myocardial Collagen Type I and Type III. Histochem J 30, 783–791 (1998). https://doi.org/10.1023/A:1003492407387

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003492407387

Keywords

Navigation