Skip to main content
Log in

Transient Increase in the α3-isoform of Na,K-ATPase in Rat Erythroblastic Cells

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

Using immunoelectron microscopy and isoform-specific antibodies against Na,K-ATPase to study changes in Na,K-ATPase in rat erythroblastic cells during maturation, we unexpectedly observed numerous antigenic sites against the α3-isoform in the cytoplasmic phase. There was an increase in the number of α3-isoforms after denucleation of the erythroblast. The increase was transient. As the reticulocyte matured into a red blood cell, the number of α3-isoforms was reduced drastically. This α3-isoform was distributed in a reticular pattern resembling the double layers of endoplasmic reticulum. Western blot analysis confirms the presence of the α3-isoform in these cells. X-ray microanalysis of the erythroid series of cells in the bone marrow shows that sodium concentration in the young reticulocyte is higher than that in the nucleated erythroblast. The reason for the transient increase in this pump p rotein is not clear. It is possible that the increase in sodium concentration in the reticulocyte plays a role in the increase in pump protein synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blanco, G., Berberian, G. & Beauge, L. (1990) Detection of a highly ouabain sensitive isoform of rat brainstem Na,K-ATPase. Biochim. Biophys. Acta 1027, 1-7.

    Google Scholar 

  • Ewart, H.S. & Klip, A. (1995) Hormonal regulation of Na,K-ATPase: mechanisms underlying rapid and sustained changes in pump activity. Am. J. Physiol. 269 (Cell Physiol. 38), C295-C311.

    Google Scholar 

  • Fambrough, D.M., Lemas, M.V., Hamrick, M., Emerick, M., Renaud, K.J., Inman, E.M., Hwang, B. & Takeyasu, K. (1994) Analysis of subunit assembly of Na,K-ATPase. Am. J. Physiol. 266, (Cell Physiol. 35) C579-89.

    Google Scholar 

  • Gasko, O. & Danon, D. (1974) Endocytosis and exocytosis in membrane remodeling during reticulocyte maturation. Br. J. Haematol. 28, 463-70.

    Google Scholar 

  • Geering, K. (1990) Subunit assembly and functional maturation of Na,K-ATPase. J. Membr. Biol. 115, 109-21.

    Google Scholar 

  • Geering, K., Meyer, D. I., Paccolat, M.-P., Kraehenbuhl, J.-P. & Rossier, B.C. (1985) Membrane insertion of α and β subunits of Na,K-ATPase. J. Biol. Chem. 260, 5154-60.

    Google Scholar 

  • Hall, T.A. (1971) The microprobe assay of chemical elements. In Physical Techniques in Biological Research, Vol. 1A (edited by G. Oster), 2nd edn, pp. 157-275. New York: Academic Press.

    Google Scholar 

  • Horisberger, J.-D., Lemas, V., Kraehenbuhl, J.-P. & Rossier, B.C. (1991) Structure-function relationship of Na,K-ATPase. Annu. Rev. Physiol. 53, 565-84.

    Google Scholar 

  • Inaba, M. & Maede, Y. (1986) Na,K-ATPase in dog red cells: immunological identification and maturationassociated degradation by the proteolytic system. J. Biol. Chem. 261, 16099-105.

    Google Scholar 

  • Jewell, E.A. & Lingrel, J.B. (1992) Chimeric rat Na,K-ATPase α1/α3 isoforms: analysis of the structural basis for differences in Na+ requirements in the α1 and α3 isoforms. In Ion-motive ATPase: Structure, Function and Regulation. Ann. N.Y. Acad. Sci. 671, 120-33.

    Google Scholar 

  • Johnstone, R.M., Adam, M., Hammond, J.R., Orr, L. & Turbide, C. (1987) Vesicle formation during reticulocyte maturation. J. Biol. Chem. 262, 9412-20.

    Google Scholar 

  • Johnstone, R.M., Bianchini, A. & Teng, K. (1989) Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood 74, 1844-51.

    Google Scholar 

  • Juhaszova, M. & Blaustein, M.P. (1997) Na pump low and high ouabain affinity á subunit isoforms are differentially distributed in cells. Proc. Natl. Acad. Sci. USA 94, 1800-5.

    Google Scholar 

  • Kirk, R.G. & Lee, P. (1988) Anion transport during maturation of erythroblastic cells. J. Membr. Biol. 101, 173-8.

    Google Scholar 

  • Lee, P., Kirk, R.G. & Reasor, M.J. (1993) X-ray microanalysis of cultures alveolar macrophages with phospholipidosis. Exp. Mol. Pathol. 58, 96-104.

    Google Scholar 

  • Lucchesi, P.A. & Sweadner, K.J. (1991) Postnatal changes in Na,K-ATPase isoform expression in rat cardiac ventricle. J. Biol. Chem. 266, 9327-31.

    Google Scholar 

  • Munzer, J. S., Daley, S.E., Jewell-Motz, E.A., Lingrel, J.B. & Blostein, R. (1994) Tissue-and isoform-specific kinetic behavior of the Na,K-ATPase. J. Biol. Chem. 269, 1668-76.

    Google Scholar 

  • Pan, B.-T. & Johnstone, R.M. (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967-77.

    Google Scholar 

  • Pan, B.-T. & Johnstone, R.M. (1984) Selective externalization of the transferrin receptor by sheep reticulocytes in vitro. J. Biol. Chem. 259, 9776-82.

    Google Scholar 

  • Pan, B.-T., Teng, K., Wu, C., Adam, M. & Johnstone, R.M. (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 101, 942-8.

    Google Scholar 

  • Pressley, T.A. (1988) Ion concentration-dependent regulation of Na,K-pump abundance. J. Membr. Biol. 105, 187-95.

    Google Scholar 

  • Rose, K.J. & Doms, R.W. (1988) Regulation of protein export from the endoplasmic reticulum. Annu. Rev. Cell Biol. 4, 257-88.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F., & Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Schamber, F.H. (1977) A modification of the linear leastsquare fitting method which provides continuum suppression. In X-ray Fluorescence Analysis of Environmental Samples (edited by T.G. Dzubay), pp. 241-257. Ann Arbor, MI: Ann Arbor Science Publisher.

    Google Scholar 

  • Schwartz, W. (ed.) (1994) Ion pumps (p-type ATPases). Cell Physiol. Biochem. 4, 73-168.

    Google Scholar 

  • Shuman, H., Somlyo, A.V., & Somlyo, A.P. (1976) Quantitative electron probe microanalysis of biological thin sections: method and validation. Ultramicroscopy 1, 317-39.

    Google Scholar 

  • Shyjan, A. & Levenson, R. (1989) Antisera specific for α1, α2, α3 and β subunits of the Na,K-ATPase: differential expression of α and β subunits in rat tissue membranes. Biochemistry 28, 4531-5.

    Google Scholar 

  • Stengelin, M.K. & Hoffman, J.F. (1997) Na,K-ATPase subunit isoforms in human reticulocytes: evidence from reverse transcription-PCR for the presence of α1, α3, α2, and γ. Proc. Natl. Acad. Sci. USA 94, 5943-8.

    Google Scholar 

  • Sweadner, K. (1989) Isozymes of the Na+/K+-ATPase. Biochim. Biophys. Acta 988, 185-220.

    Google Scholar 

  • Therien, A.G., Nestor, N.B., Ball, W.J. & Blostein, R. (1996) Tissue-specific versus isoform-specific difference in cation activation kinetics of the Na,K-ATPase. J. Biol. Chem. 271, 7104-12.

    Google Scholar 

  • Tokuyasu, K.T. (1980) Immunochemistry on ultrathin frozen sections. Histochem. J. 12, 381-403.

    Google Scholar 

  • Zweig, S.E., Tokuyasu, K.T. & Singers, S. J. (1981) Membrane associated changes during erythropoiesis: on the mechanism of maturation of reticulocytes to erythrocytes. J. Supramol. Struct. 17, 163-81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CS., Kirk, R.G. & Lee, P. Transient Increase in the α3-isoform of Na,K-ATPase in Rat Erythroblastic Cells. Histochem J 30, 811–818 (1998). https://doi.org/10.1023/A:1003488306478

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003488306478

Keywords

Navigation