Skip to main content
Log in

Decomposition of protein compounds in an eutrophic lake: spatial and temporal distribution of exopeptidase and endopeptidase activities in various size fractions

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Activities of exopeptidases and endopeptidases in various size fractions and the possible regulation of these enzymes in response to the changes in substrate concentrations were studied. The endopeptidase activities were determined using a protein substrate labelled with a fluorochrome. Among the enzyme activities studied only leucine aminopeptidase and endopeptidase activities were recorded. The protein compounds did not seem to cleave by synergistic endo and exoenzyme mechanisms. The inhibitory effect of ethylenediamine tetraacetate (EDTA) and phenylmethylsulfonile fluoride (PMSF) suggested a high proportion of metallo-proteases and serine-proteases. The inhibitory profile at 1 and 5 m indicated that planktonic organisms probably produced the same type of proteases, whereas enzymes present in the 0–1.2 and 1.2–100 μm fractions were not similar. The mean percentages of aminopeptidase activity at 1, 5 and 14 m in the dissolved fraction were 12.5, 12.7 and 18.4%. This enzyme activity was low in the 0.2–1.2 μm fraction (12.1% at 1 m, 13.3% at 5 m and 19.1%, at 14 m) compared to that measured in the 1.2–100 μm fraction, whereas the average percentages of endopeptidase activities in this fraction were 50.9% at 1 m, 50.1% at 5 m and 53.5% at 14 m. The bacteria attached to particles had a higher specific activity than free-living bacteria. It was 11.7 times higher than the enzyme activity associated with larger free-living bacteria and 112.3 times higher than the activity of small free-living bacteria. In this study, the specific activity of the aminopeptidase (activity in the fraction 0.2–100 μm per number of bacteria) was correlated with Chl a at 1 m (r = 0.65, P <0.01), 5 m (r = 0.78, P <0.001) and 14 m (r = 0.96, P <0.001). The production of protein compounds by the phytoplankton could therefore regulate aminopeptidase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Admiraal, W., & G. M. J. Tubbing, 1991. Extracellular enzyme activity associated with suspended matter in the river rhine. Freshwater Biol. 26: 507–517.

    Article  CAS  Google Scholar 

  • Boon, P. I., 1989. Organic matter breakdown and nutrient regeneration in Australian freshwaters. I. Methods for enzyme assays in turbid aquatic environments. Arch. Hydrobiol. 115: 339–359.

    CAS  Google Scholar 

  • Boon, P. I., 1991. Enzyme activities in billabongs of southeastern Australia. In Chrost, R. J. (ed.), Microbial Enzymes in Aquatics Environments. Springer-Verlag, New York: 286–296.

    Google Scholar 

  • Brock, F. M., C.W. Forsberg & J. G. Buchanam-Smith, 1982. Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors. Appl. environ. Microbiol. 44: 561–569.

    PubMed  CAS  Google Scholar 

  • Chappell, K. R. & R. Goulder, 1995. A between-river comparison of extracellular-enzyme activity. Microb. Ecol. 29: 1–17.

    Article  CAS  Google Scholar 

  • Clayton, J. R. Jr, Q. Dortch, S. S. Thoresen & S. I. Ahmed, 1988. Evaluation of methods for the separation and analysis of preoteins and free amino acids in phytoplankton samples. J. Plankton Res. 10: 341–358.

    CAS  Google Scholar 

  • Christian, J. R. & D. M. Karl, 1995. Bacterial ectoenzymes in marine waters: activity ratios and temperature responses in three oceanographic provinces. Limnol. Oceanogr. 40: 1042–1049.

    CAS  Google Scholar 

  • Chrost, R. J., 1989. Characterization and significance of β-glucosidase activity in lake water. Limnol. Oceanogr. 34: 660–672.

    CAS  Google Scholar 

  • Chrost, R. J., 1990. Microbial ectoenzymes in aquatic environments. In Aquatic microbial ecology Overbeck, O. & R. J. Chrost (eds), Springer-Verlag, New York: 47–74.

    Google Scholar 

  • Chrost, R. J., 1991. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In Chrost, R. J. (ed.), Microbial Enzymes in Aquatics Environments. Springer-Verlag, New York: 29–59.

    Google Scholar 

  • Chrost, R. J., 1994. Microbial enzymatic degradation and utilization of organic matter In Overbeck, J. & R. J. Chrost (ed.), Microbial Ecology of Lake Pluβsee. Springer Verlag, New York: 118–175.

    Google Scholar 

  • Chrost, R. J., R. Wcislo & G. Z. Halemejko, 1986. Enzymatic decomposition of organic matter by bacteria in an eutrophic lake. Arch. Hydrobiol. 107: 145–165.

    CAS  Google Scholar 

  • Chrost, R. J., U. Münster, H. Rai, D. Albrecht, P. K. Witzel & J. Overbeck, 1989. Photosynthetic production and exoenzymatic degradation of organic matter in the euphotic zone of a eutrophic lake. J. Plankton. Res. 11: 223–242.

    CAS  Google Scholar 

  • Fontigny, A., G. Billen & J. Vives-Rego, 1987. Some kinetic characteristics of exoproteolytic activity in coastal seawater. Estuar. Coast. Shelf Sci. 25: 127–133.

    Article  CAS  Google Scholar 

  • Gajewski, J., 1993. Phytoplankton production and bacterial activity in decomposition of organic matter in an eutrophic lake. The case of aminopeptidase activity. Acta. Microbiol. Pol. 42: 291–302.

    CAS  Google Scholar 

  • Gajewski, J. & R. J. Chrost, 1995. Microbial enzyme activities and phytoplankton and bacterial production in the pelagial of the great mazurial lakes (north-eastern Poland) during summer stratification. Ekol. Pol. 43: 245–265.

    CAS  Google Scholar 

  • Halemejko, G. Z. & R. J. Chrost, 1986. Enzymatic hydrolysis of proteinaceous particulate and dissolved material in an eutrophic lake. Arch. Hydrobiol. 107: 1–21.

    CAS  Google Scholar 

  • Hashimoto, S., K. Fujiwara & K. Fuwa, 1985. Distribution and characteristics of carboxypeptidase activity in pond, river, and seawaters in the vicinity of Tokyo. Limnol. Oceanogr. 30: 631–645.

    CAS  Google Scholar 

  • Heptinstall, J., J. V. Stewart & M. Seras, 1986. Fluorimetric extimation of exo-cellobiohydrolase and β-glucosidase activities in cellulase from Aspergillus fumigatus fresenius. Enzyme Microbiol. Technol. 8: 70–74.

    Article  CAS  Google Scholar 

  • Hollibaugh, J. T. & F. Azam, 1983. Microbial degradation of dissolved proteins in seawater Limnol. Oceanogr. 28: 1104–1116.

    CAS  Google Scholar 

  • Hoppe, H. G., 1983. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar. Ecol. Prog. Ser. 11: 299–308.

    CAS  Google Scholar 

  • Hoppe, H. G., 1984. Relations between bacterial extracellular enzyme activities and heterotrophic substrate uptake in a brackish water environment. GERBAM - 2nd Colloque de Bactériologie Marine, CNRS Brest 1–5 Octobre.

  • Jacobsen, T. R. & H. Rai, 1988. Determination of aminopeptidase activity in lakewater by a short time kinetic assay and its application in two lakes of differing eutrophication. Arch. Hydrobiol. 113: 359–370.

    CAS  Google Scholar 

  • Jacobsen, T. R. & H. Rai, 1991. Aminopeptidase activity in lakes of differing eutrophication In: Chrost, R.J. (ed.), Microbial Enzymes in Aquatic Environments. Springer-Verlag, New York: 155–163.

    Google Scholar 

  • Karner, M. & G. J. Herndl, 1992. Extracellular enzymatic activity and secondary production in free-living and marine-snowassociated bacteria. Mar. Biol. 113: 341–347.

    CAS  Google Scholar 

  • Karner, M. & F. Rassoulzadegan, 1995. Extracellular enzyme activity: indications for high short-term varaibility in a coastal marine ecosystem. Microb. Ecol. 30: 143–156.

    CAS  Google Scholar 

  • Karner, M., C. Ferrier-Pagès & F. Rassoulzadegan, 1994. Phagotrophic nanoflagellates contribute to occurrence of β-glucosidase and aminopeptidase in marine environments. Mar. Ecol. Prog. Ser. 114: 237–244.

    CAS  Google Scholar 

  • Khalid, N. M. & E. H. Marth, 1990. Lactobacilli–their enzymes and role in ripening and spoilage of cheese: a review. J. Dairy Sci. 73: 2669–2684.

    CAS  Google Scholar 

  • Little, J. E., R. E. Sjogren & G. R. Carson, 1979. Measurement of proteolysis in natural waters Appl. Environ. Microbiol. 37: 900–908.

    CAS  Google Scholar 

  • Lorenzen, C.J., 1967. Determination of chlorophyll and pheopigments: Spectrophotometric equations. Limnol. Oceanogr. 12: 343–346.

    CAS  Google Scholar 

  • Marvalin, O., L. Aleya & C. Amblard, 1989a. Importance relative des fractions bactériennes libres et fixées en milieu lacustre eutrophe. Arch. Hydrobiol. 115: 371–390.

    Google Scholar 

  • Marvalin O., L. Aleya & H. Hartmann, 1989b. Coupling of the seasonal patterns of bacterioplankton and phytoplankton in a eutrophic lake. Can. J. Microbiol. 35: 706–712.

    Article  Google Scholar 

  • Middelboe, M., M. Sondergaard, Y. Letarte & N.H. Borch, 1995. Attached and free-living bacteria and polymer hydrolysis during a diatom bloom. Microb. Ecol. 29: 231–248.

    Article  Google Scholar 

  • Münster, U. 1992. Microbial extracellular enzyme activities and biopolymer processing in two acid polyhumic lakes. Arch. Hydrobiol. Beih. Ergebn. Limnol. 37: 21–32.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Rego, J. V., G. Billen, A. Fontigny & M. Somville, 1985. Free and attached proteolytic activity in water environments. Mar. Ecol. Prog. Ser. 21: 245–249.

    CAS  Google Scholar 

  • Riley, G. A. 1970. Particulate matter in seawater. Adv. Mar. Biol. 8: 1–118.

    Article  Google Scholar 

  • Sinsabaugh, R.L., S. Findlay, P. Franchini & D. Fischer, 1997. Enzymatic analysis of riverine bacterioplankton production. Limnol. Oceanogr. 42: 29–38.

    Article  CAS  Google Scholar 

  • Somville, M. & G. Billen, 1983. A method for determining exoproteolytic activity in natural waters. Limnol. Oceanogr. 28: 190–193.

    Article  CAS  Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. Spectrophotometric determination of chlorophylls and total carotenoïds. In Stevenson, J. C. (ed.), A Practical Handbook of Seawater Analysis. Fisheries research board of Canada.

  • Sundh, I., 1989. Characterization of phytoplankton extracellular products (PDOC) and their subsequent uptake by heterotrophic organisms in a mesotrophic forest lake. J. Plankton Res. 11: 463–489.

    CAS  Google Scholar 

  • Sundh, I., 1992. Biochemical composition of dissolved organic carbon derived from phytoplakton and used by heterotrophic bacteria. appl. Environ. Microbiol. 58: 2938–2947.

    CAS  Google Scholar 

  • Twining, S. S., 1984. Fluorescein Isothiocyanate-labelled casein assay for proteolytic enzymes. Anal. Biochem. 143: 30–34.

    Article  PubMed  CAS  Google Scholar 

  • Undenfried, S., S. Stein, P. Böhlen, W. Dairman, W. Leimgruber & M. Weigele, 1972. Florescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science 178: 871–872.

    Google Scholar 

  • Wanatabee, Y., 1980. A study on the excretion and extracellular products of natural phytoplankton spring bloom in lake Nakamuna, Japan. Int. Rev. Ges. Hydrobiol. 65: 809–834.

    Google Scholar 

  • Ward, O. P. 1983. Proteinases. In Fogarty W. M. (ed.) Microbial Enzymes and Biotechnology. Appl. Sci. Publishers, London and New York: 251–377.

    Google Scholar 

  • Weiss, M. S., U. Abele, J. Weckesser, W. Welte, E. Schiltz & G. E. Schulz, 1991. Molecular architecture and electrostatic properties of a bacterial porin. Science 254: 1627–1630.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debroas, D. Decomposition of protein compounds in an eutrophic lake: spatial and temporal distribution of exopeptidase and endopeptidase activities in various size fractions. Hydrobiologia 382, 161–173 (1998). https://doi.org/10.1023/A:1003483716129

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003483716129

Navigation