Skip to main content
Log in

Distribution and dynamics of bacterioplankton production in a polymictic tropical lake (Lago Xolotlán, Nicaragua)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

From 1988 to 1993 we assessed the variability of bacterioplankton production and biomass in Lake Xolotlán (L. Managua), Nicaragua via [3H]thymidine incorporation into DNA and cell counting. Bacterial production ranged from 3 to 8 μg C l-1 h-1, and since production was equal throughout the water column, areal production was high (≈ 600–1200 mg C m-2 d-1). Bacterial abundance in Lake Managua was extremely high, 7–30 × 109 cells l-1. Thus, specific rates of bacterial production were low. There was a strong correlation between production and number and the specific rate of bacterial production was constant. Comparable measurements of production via [3H]leucine incorporation into proteins indicated that bacteria were experiencing ‘balanced growth’. We conclude that bacterioplankton in Lake Xolotlán had reached its carrying capacity and a significant correlation between bacterial production and concentration of phaeophytin implied that dead or dying algae was the limiting substrate for bacterioplankton. The majority of bacterial number and most of bacterial production (up to 75%) were associated with particles in the >3-μm fraction, probably lysing algal cells to which bacterioplankton were ‘attached’. Grazing on bacterioplankton must be low and bacteria should be a ‘sink’ for organic matter in Lake Xolotlán.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgren, I., C. Chacón, R. García, I. Mairena, K. Rivas & A. Zelaya, 1997.Sediment microbial activity in temperate and tropical lakes, a comparison between Swedish and Nicaragua lakes. Verh. Internat. Verein. Limnol. 26: 429–434.

    Google Scholar 

  • Bell, R. T., 1984. midine incorporation rates and bacterioplanktondynamics during early spring in Lake Erken. Ergebn. Limnol. 19: 81–89.

    CAS  Google Scholar 

  • Bell, R. T., 1990. An explanation for the variability in the conversion factor deriving bacterial cell production from incorporation of [3H]thymidine. Limnol. Oceanogr. 35: 910–915.

    CAS  Google Scholar 

  • Bell, R. T., G. Ahlgren & I. Ahlgren, 1983. Estimating bacterioplanktonproduction by measuring [3H]thymidine incorporation in a eutrophic Swedish lake. Apl. envir. Microbiol. 45: 1709–1721.

    Google Scholar 

  • Berman, T. & C. Gerber, 1980. Differential filtration studies of carbon flux from living algae to microheterotrophs, microplankton size distribution and respiration in Lake Kinneret. Microb. Ecol. 6: 189–198.

    Article  Google Scholar 

  • Bird, D. F. & J. Kalff, 1984. Empirical relationships between bacterial abundance and chlorophyll concentrations in marine and fresh waters. Can. J. Fish. aquat. Sci. 41: 1015–1023.

    Google Scholar 

  • Bratbak, G. & T. F. Thingstad, 1985. Phytoplankton-bacteria interactions: an apparent paradox? An analysis of a model system with both competition and communalism. Mar. Ecol. Prog. Ser. 25: 23–30.

    Google Scholar 

  • Bratbak, G. & I. Dundas, 1984. Bacterial dry matter content and biomass estimations. Apl. envir. Microbiol. 48: 755–757.

    CAS  Google Scholar 

  • Chrzanowski, T. H., K. Simek, R. H. Sada & S. Williams, 1993. Estimates of bacterial growth rate constants from thymidine incorporation and variable conversion factors. Microb. Ecol. 25: 121–130.

    Article  CAS  Google Scholar 

  • Cole, J. J., S. Findlay & M. Pace, 1988. Bacterial production in fresh and salt-water ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43: 1–10.

    Google Scholar 

  • Coffin, R. B. & J. H. Sharp, 1987. Microbial trophodynamics in the Delaware estuary. Mar. Ecol. Prog. Ser. 41: 253–266.

    Google Scholar 

  • Currie, D. J., 1990. Large scale variability and interactions among phytoplankton, bacterioplankton and phosphorus. Limnol. Oceanogr. 35: 1437–1455.

    Google Scholar 

  • Currie, D. J., E. Bentzen & J. Kalff, 1986. Does algal-bacterial phosporus partitioning vary among lakes? A comparative study of orthophosphate uptake and alkaline phosphatase activity in freshwater. Can. J. aquat. Sci. 43: 311–318.

    Article  CAS  Google Scholar 

  • Ducklow, H. W. & S. M. Hill, 1985. Tritiated thymidine incorporation and growth of heterotrophic bacteria in warm core-rings. Limnol. Oceanogr. 30: 260–272.

    CAS  Google Scholar 

  • Ducklow, H. W., D. A. Purdie, P. J. le B. Williams & J. M. Davies, 1986. Bacterioplankton: a sink for carbon in a coastal marine plankton community. Science 232: 865–867.

    CAS  PubMed  Google Scholar 

  • Erikson, R., 1998. Algal respiration and the regulation of phytoplankton biomass in a polymictic tropical lake (Lake Xolotlán, Nicaragua). Hydrobiologia 382: 17–26.

    Article  Google Scholar 

  • Erikson, R., M. Pum, K. Vammen, A. Cruz, M. Ruiz & H. Zamora, 1997. Nutrient availability and the stability of phytoplankton biomass andproduction in Lake Xolotlán, Nicaragua. Limnologica 27: 157–164.

    CAS  Google Scholar 

  • Erikson, R., E. Hooker, M. Mejia, K. Vammen & A. Zelaya, 1998. Optimal conditions for primary production in a polymictic tropical lake (Lake Xolotlán, Nicaragua). Hydrobiologia 382: 1–16.

    Article  CAS  Google Scholar 

  • Gebre-Mariam, Z. & W. D. Taylor, 1989a. Heterotrophic bacterioplankton production and grazing mortality rates in an Ethiopian rift-valley lake (Awassa). Freshwat. Biol. 22: 369–381.

    Article  Google Scholar 

  • Gebre-Mariam, Z. & W. D. Taylor. 1989b. Seasonality and spatial variation in abundance, biomass and activity of heterotrophic bacterioplankton in relation to some biotic and abiotic variables in an Ethiopian rift-valleylake (Awassa). Freshwat. Biol. 22: 355–368.

    Article  Google Scholar 

  • Hobbie, J. E., J. Daley & S. Jasper, 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Apl. envir. Microbiol. 33: 1225–1228.

    CAS  Google Scholar 

  • Hooker, E. L., S. Hernandez, N. Chow & L. Vargas, 1991. Phytoplankton studies in a tropical lake (Lake Xolotlán, Nicaragua). Verh. int Ver. Limnol. 24: 1158–1162.

    Google Scholar 

  • Kirchman, D. L., 1983. The production of bacteria attached to particles suspended in freshwater pond. Limnol. Oceanogr. 28: 858–872.

    Google Scholar 

  • Kirchman, D. L., H. W. Ducklow & R. Mitchell, 1982. Estimates of bacterial growth from changes in uptake rate and biomass. Apl. envir. Microbiol. 44: 1296–1307.

    CAS  Google Scholar 

  • Kirchman, D. L. & R. Mitchell, 1982. Contribution of particle-Bound bacteria to microheterotrophic activity in five coastal ponds and two marshes. Apl. envir. Microbiol. 43: 200–209.

    CAS  Google Scholar 

  • Kirchman, D. L., R. E. Murrey & R. E. Hodson, 1986. Rates of DNA and protein synthesis by heterotrophic bacteria in aquatic environments: a comparison between the thymidine and the leucine approaches. Proc. V ISME 631–637.

  • Lacayo, M., 1991. Physical and chemical features of Lake Xolotlán (Managua). Hydrobiol. Bull. 25: 111–116.

    Article  CAS  Google Scholar 

  • Larson, U. & A. Hagström, 1979. Phytoplankton exudate release as an energy source for the growth of pelagic bacteria. Mar. Biol. 52: 199–206.

    Article  Google Scholar 

  • Larson, U. & A. Hagström, 1982. Fractionated phytoplankton primary production, exudates release and bacterial production in a Baltic eutrophication gradient. Mar. Ecol. 67: 57–70.

    Google Scholar 

  • Lewis, W. M., Jr, T. Frost & D. Morris, 1986. Studies of planktonic bacteria inLake Valencia, Venezuela. Arch. Hydrobiol. 106: 289–305.

    Google Scholar 

  • Mariazzi, A. A., M. A. Di Sierva & J. L. Donadelli, 1991. Bacterial secondary production and its relation with primary production in the Embalse deRio III reservoir, Argentina. Hydrobiologia 211: 57–64.

    Article  Google Scholar 

  • Moriarty, D. J.W., 1986. Accurate conversion factors for calculating bacterial growth rates from thymidine incorporation into DNA: elusive or illusive? Ergeb. Limnol. 31: 211–217

    Google Scholar 

  • Rai, H., 1979. Microbiology of Central Amazon lakes. Amazoniana 6: 583–599.

    Google Scholar 

  • Rai, H. & G. Hill, 1980. Classification of central Amazon lakes on basis of their microbiological and physico-chemical characteristics. Hydrobiologia 2: 85–99.

    Article  Google Scholar 

  • Riemann, B. & R. T. Bell, 1990. Advances in estimating bacterial biomass and growth in aquatic systems. Arch. Hydrobiol. 118: 485–502.

    Google Scholar 

  • Riemann, B. & M. Søndergaard, 1986. Measurements of diel rates of bacterial secondary production in aquatic environments. Apl. envir. Microbiol. 47: 632–638.

    Google Scholar 

  • Riemann, B., R. T. Bell & N. O. G. Jørgensen, 1990. Incorporation of thymidine, adenine and leucine into natural bacterial assemblages. Mar. Ecol. Prog. Ser. 65: 159–170.

    CAS  Google Scholar 

  • Robarts, R. D. & R. J. Wicks, 1989. [Methyl-3H]thymidine macromolecular incorporation and lipid labelling: their significance to DNA during measurements of aquatic bacterial growth rates. Limnol. Oceanogr. 34: 213–222.

    CAS  Google Scholar 

  • Robarts, R. D. & R. J. Wicks, 1990. Heterotrophic bacterial production and its dependence on autotrophic production in a hypertrophic African reservoir. Can. J. Fish. aquat. Sci. 47: 1027–1037.

    Article  Google Scholar 

  • Scavia, D. & A. G. Laird, 1987. Bacterioplankton in Lake Michigan: dynamics, controls, and carbon flux. Limnol. Oceanogr. 32: 1017–1033.

    Article  CAS  Google Scholar 

  • Simon, M. & F. Azam, 1989. Protein content and protein synthesis rate of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201–213.

    CAS  Google Scholar 

  • Smits, J. D. & B. Riemann, 1988. Calculation of cell production from [3H]thymidine incorporation with freshwater bacteria. Apl. envir. Microbiol. 54: 2213–2219.

    CAS  Google Scholar 

  • Vargas, M. H., K. Vammen, I. Mairena, A. Zelaya, L. Vanagas & C. Chacon,1991.Estudios de la dispersion horizintal de bacterias fecales en el litoral sur del Lago Xolotlán. Taller de la limnologia aplicada al Lago de Managua para su recuperacion y aprovechamiento. UNAN, Managua.

    Google Scholar 

  • Viner, A. B., 1973. Response of tropical mixed phytoplankton population to nutrient enrichments of ammonia and phosphate, and some ecological implications. Proc. R. Soc. Lond. B183: 351–370

    Article  Google Scholar 

  • Wainwright, S., 1987. Stimulation of heterotrophic microplankton production by resuspended marine sediments. Science 238: 1710–1712.

    Google Scholar 

  • Wicks, R. J. & R. D. Robarts, 1987. The extraction and purification of DNA labelled with [methyl-3H]thymidine in aquatic bacterial production studies. J. Plankton Res. 9: 1159–1166.

    CAS  Google Scholar 

  • Wicks, R. J. & R. D. Robarts, 1988. Ethanol extraction requirements for purification of protein labelled with [3H]leucine in aquatic bacterial production studies. Apl. envir. Microbiol. 54: 3191–3193.

    CAS  Google Scholar 

  • Wright, R. T. & R. B. Coffin, 1984. Factors affecting bacteroplankton density and productivity in salt marsh estuaries. In M. J. Klug & C. A. Reddy (eds), Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington, DC: 458–494.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erikson, R., Vammen, K., Zelaya, A. et al. Distribution and dynamics of bacterioplankton production in a polymictic tropical lake (Lago Xolotlán, Nicaragua). Hydrobiologia 382, 27–39 (1998). https://doi.org/10.1023/A:1003476819259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003476819259

Navigation