Skip to main content
Log in

Microbial interactions responsible for dissolved DNA production in a hypereutrophic pond

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Concentration of dissolved DNA, microbial biomass, and consumption of bacteria by heterotrophic nanoflagellates (HNF) and ciliates were examined in a hypereutrophic pond for over 7 months to elucidate the main factors which influenced the release of dissolved DNA. Changes in concentration of dissolved DNA correlated well with both abundance of ciliates ( r = 0.788, p < 0.01) and rotifers ( r = 0.738, p < 0.01). A significant correlation was also found between dissolved DNA concentration and ciliate community ingestion rates ( r = 0.668, p <0.01). These results suggest that consumption of bacteria by ciliates is an important reason for the release of dissolved DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailiff, M. D. & D. M. Karl, 1991. Dissolved and particulate DNA dynamics during a spring bloom in the Antarctic Peninsula region, 1986–87. Deep Sea Res. 38: 1077–1095.

    Article  CAS  Google Scholar 

  • Caron, D. A., 1983. Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl. envir. Microbiol. 46: 491–498.

    Google Scholar 

  • Christen, A. A., M. L. Paul, T. Manzara & P. F. Lurquin, 1983. Rapid isolation of Escherichia coli by glass-fiber minicell filtration: study of plasmid-coded polypeptides. Gene. 23: 195–198.

    Article  PubMed  CAS  Google Scholar 

  • DeFlaun, M. F., J. H. Paul & D. Davis, 1986. Simplified method for dissolved DNA determination in aquatic environments. Appl. envir. Microbiol. 52: 654–659.

    CAS  Google Scholar 

  • DeFlaun, M. F., J. H. Paul & W. H. Jeffrey, 1987. Distribution and molecular weight of dissolved DNA in subtropical estuarine and oceanic environments. Mar. Ecol. Prog. Ser. 38: 65–73.

    CAS  Google Scholar 

  • Jørgensen, N. O. & C. S. Jacobsen, 1996. Bacterial uptake and utilization of dissolved DNA. Aquat. Microb. Ecol. 11: 263–270.

    Google Scholar 

  • Karl, D. M. & M. D. Bailiff, 1989. The measurement and distribution of dissolved nucleic acids in aquatic environments. Limnol. Oceanogr. 34: 543–558.

    CAS  Google Scholar 

  • Kawabata, Z., N. Ishii, M. Nasu & M.-G. Min, 1998. Dissolved DNA produced through a prey–predator relationship in a species-defined aquatic microcosm. Hydrobiologia, in press.

  • Miner, R. A., 1972. Characterization of naturally occurring dissolved organophosphorus compounds. Envir. Sci. Technol. 6: 431–437.

    Article  Google Scholar 

  • Nagata, T. & D. L. Kirchman, 1992a. Release of dissolved organic matter by heterotrophic protozoa: Implications for microbial food webs. Arch. Hydrobiol., Beih. Ergeb. Limnol. 35: 99–109.

    Google Scholar 

  • Nagata, T. & D. L. Kirchman, 1992b. Release of macromolecular organic complexesby heterotrophic marine flagellates. Mar. Ecol. Prog. Ser. 83: 233–240.

    CAS  Google Scholar 

  • Paul, J. H., W. H. Jeffrey & M. F. DeFlaun, 1987. Dynamics of extracellular DNA in the marine environment. Appl. envir. Microbiol. 53: 170–179.

    CAS  Google Scholar 

  • Paul, J. H., M. F. DeFlaun, W. H. Jeffrey & A. W. David, 1988. Seasonal and diel variability in dissolved DNA and in microbial biomass and activity in subtropical estuary. Appl. envir. Microbiol. 54: 718–727.

    CAS  Google Scholar 

  • Paul, J. H. & A. W. David, 1989. Production of extracellular nucleic acids by genetically altered bacteria in aquatic-environment microcosms. Appl. envir. Microbiol. 55: 1865–1869.

    CAS  Google Scholar 

  • Paul, J. H., L. Cazares & J. Thurmond, 1990a. Amplification of rbcL gene from dissolved and particulate DNA from aquatic environments. Appl. envir. Microbiol. 56: 1963–1966.

    CAS  Google Scholar 

  • Paul, J. H., W. H. Jeffrey & J. P. Cannon, 1990b. Production of dissolved DNA, RNA, and protein by microbial population in Florida Reservoir. Appl. envir. Microbiol. 56: 2957–2962.

    CAS  Google Scholar 

  • Paul, J. H., M. E. Frischer & J. M. Thurmond, 1991a. Gene transfer in marine water column and sediment microcosms by natural plasmid transformation. Appl. envir. Microbiol. 57: 1509–1515.

    CAS  Google Scholar 

  • Paul, J. H., S. C. Jiang & J. B. Rose, 1991b. Concentration of viruses and dissolved DNA from aquatic environment by vortex flow filtration. Appl. envir. Microbiol. 57: 2197–2204.

    CAS  Google Scholar 

  • Pillai, T. N. V. & A. K. Ganguly, 1972. Nucleic acid in the dissolved constituents of sea water. J. mar. biol. Ass. India 14: 1–7.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Rami, M. & D. Porath, 1980. Chlorophyll determination in intact tissues using N, N-dimethylformamide. Plant. Physiol. 65: 478– 479.

    Article  Google Scholar 

  • Reanny, D. C., P. C. Gowland & J. H. Slater, 1983. Genetic interactions among communities. In R. W. J. H. Slater & J. W. T. Wimpenny (eds), Microbes in the Natural Environment. Cambridge University Press, Cambridge: 379–421.

    Google Scholar 

  • Sanders, R. W., K. G. Porter, S. J. Bennett & A. E. Debiase, 1989. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planctonic community. Limnol. Oceanogr. 34: 673–387.

    Article  Google Scholar 

  • Sherr, B. F., E. B. Sherr & R. D. Fallon, 1987. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl. envir. Microbiol. 53: 958–965.

    Google Scholar 

  • Takamura, N., Y. Ishikawa, H. Mikami, H. Mikami, Y. Fujita, S. Higuchi, H. Murase, S. Yamanaka, Y. Nan-Jyo, T. Igari & T. Fukushima, 1996. Abundance of bacteria, picoplankton, nanoflagellates and ciliates in relation to chlorophyll α and nutrient concentrations in 34 Japanese waters. Jpn. J. Limnol. 57: 245–259 (in Japanese).

    CAS  Google Scholar 

  • Turk, V., A.S. Rehnstam, E. Lundberg & Å. Hagström, 1992. Release of bacterial DNA by marine nanoflagellates, an intermediate step in phosphorus regeneration. Appl. envir. Microbiol. 58: 3744–3950.

    CAS  Google Scholar 

  • Ueda, S. & T. Hara, 1981. Studies on nucleic acid production and application. I. Production of extracellular DNA by Pseudomonas sp. KYU-1. J. Appl. Biochem. 3: 1–10.

    CAS  Google Scholar 

  • Watson, J. D., N. H. Hopkins, J. W. Roberts, J. A. Steitz & A. M. Weiner, 1965. Cellular proteins can be displayed on two-dimensional gels, In: Molecular biology of the gene. The benjamin/cummings publishing company, Inc., California: 102.

    Google Scholar 

  • Williams, H. G., M. J. Day, J. C. Fry & G. J. Stewart, 1996. Natural transformation in river epilithon. Appl. envir. Microbiol. 62: 2994–2998.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishii, N., Kawabata, Z., Nakano, Si. et al. Microbial interactions responsible for dissolved DNA production in a hypereutrophic pond. Hydrobiologia 380, 67–76 (1998). https://doi.org/10.1023/A:1003475000195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003475000195

Navigation