Journal of Applied Electrochemistry

, Volume 28, Issue 10, pp 1021–1033 | Cite as

Electrodes based on Magnéli phase titanium oxides: the properties and applications of Ebonex® materials

  • J. R. Smith
  • F. C. Walsh
  • R. L. Clarke


Magnéli phases are a range of substoichiometric oxides of titanium of the general formula TinO2n−1, (where n is between 4 and 10) produced from high temperature reduction of titania in a hydrogen atmosphere. These blue/black ceramic materials exhibit a conductivity comparable to that of graphite and can be produced in a number of forms, such as tiles, rods, fibres, foams and powders. While these materials have been studied for many years, they have only recently received interest for use as ceramic electrode materials, commercially termed ‘Ebonex®’, and are beginning to challenge precious metal coated anodes for some applications in aggressive electrolytes. Other uses for these materials include electrowinning, electroplating, battery materials, impressed current cathodic protection anodes, electrochemical soil remediation, oxidation of organic wastes, flexible cable materials and electrophoresis. The scope of this review considers the structure and properties of Magnéli phase titanium oxide materials, together with their electrochemical behaviour and applications.

Magnéli phases substoichiometric conductive titanium oxides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Andersson, Acta Chem Scand. 11 (1957) 1641.Google Scholar
  2. [2]
    R. L. Clarke and S. K. Harnsburger, Am. Lab. 20 (1988) 6.Google Scholar
  3. [3]
    J. F. Houlihan and L. N. Mulay, Phys. Stat. Sol. B 61 (1974) 647.Google Scholar
  4. [4]
    R. F. Bartholomew and D. R. Frankl, Phys. Rev. 187(3) (1960) 828.Google Scholar
  5. [5]
    J. F. Houlihan and L. N. Mulay, Mater. Res. Bull. 6 (1971) 737.Google Scholar
  6. [6]
    J. B. Goodenough, ibid. 2(2) (1967) 165.Google Scholar
  7. [7]
    L. K. Keys and L. N. Mulay, J. Appl. Phys. 38 (1967) 1466.Google Scholar
  8. [8]
    D. Goldschmidt and M. Watanabe, Mater. Res. Bull. 20 (1985) 65.Google Scholar
  9. [9]
    R. J. Pollock, J. F. Houlihan, A. N. Bain and B. S. Coryea, ibid. 19 (1984) 17.Google Scholar
  10. [10]
    R. R. Miller-Folk and R. E. Noftle, J. Electroanal. Chem. 274 (1989) 257.Google Scholar
  11. [11]
    J. E. Graves, D. Pletcher, R. L. Clarke and F. C. Walsh, J. Appl. Electrochem. 21 (1991) 848.Google Scholar
  12. [12]
    J. K. Burdett and J. F. Mitchell, Chem. Mater. 5 (1993) 1465.Google Scholar
  13. [13]
    M. Amjad and D. Pletcher, J. Electroanal. Chem. 59 (1975) 61.Google Scholar
  14. [14]
    D. P. Sepa, A. Damjanovic and J. O'M. Bockris, Electrochim. Acta 12 (1967) 746.Google Scholar
  15. [15]
    S. Andersson, A. Sundholm and A. Magnéli, Acta Chem. Scand. 13 (1959) 989.Google Scholar
  16. [16]
    G. V. White et al., Ceramics, Adding the Value, Proceedings of the International Ceramic Conference, Austceram ‘92, Vol. 1, (1992), p. 365.Google Scholar
  17. [17]
    H. Anderson and P. Hyde, J. Phys. Chem. Solids 28 (1967) 1392.Google Scholar
  18. [18]
    Atraverda Ltd., Darenth House, Rotterham Road, Eckington, Sheffield, S31 9FH, UK, company literature (1995).Google Scholar
  19. [19]
    M. Marezio, D. McWhan, P. Derniero and J. Remeica, J. Solid State Chem. 6 (1973) 213.Google Scholar
  20. [20]
    K. Nagarawa, Y. Kato and Y. Bando, J. Phys. Soc. Jpn. 29 (1970) 241.Google Scholar
  21. [21]
    L. K. Keys and L. N. Mulay, Phys. Rev. 154 (1967) 453.Google Scholar
  22. [22]
    L. N. Mulay and W. J. Danley, J. Apply. Phys. 41 (1970) 877.Google Scholar
  23. [23]
    W. J. Danley and L. N. Mulay, Mater. Res. Bull. 7 (1972) 739.Google Scholar
  24. [24]
    C. Schlenker, R. Buder, M. Schlenker, J. F. Houlihan and L. N. Mulay, Phys. Stat. Sol. B. 54 (1972) 247.Google Scholar
  25. [25]
    J. B. Goodenough, ‘Progress in Solid Chemistry’ Vol. 5 (edited by H. Reiss), Pergamon Press, New York (1971).Google Scholar
  26. [26]
    R. L. Clarke, 2nd European Conference on Electrochemical Processing. Innovation and Progress, Moat House International, Glasgow, 21-23 Apr. (1993).Google Scholar
  27. [27]
    K. Kohlbrecka and J. Przyluski, Electrochim. Acta 39(11/12) (1994) 1591.Google Scholar
  28. [28]
    R. L. Clarke and R. Pardoe, ‘Application of Ebonex® Conductive Ceramic Electrodes in Effluent Treatment in Electrochemistry for a Cleaner Environment’ (edited by J. D. Genders and N. L. Weinberg), The Electrosynthesis Company, New York (1992).Google Scholar
  29. [29]
    A. M. Couper, D. Pletcher and F. C. Walsh, Chem. Rev. 90 (1990) 837.Google Scholar
  30. [30]
    P. C. S. Hayfield, US Patent 4 422 917 (1983).Google Scholar
  31. [31]
    S. M. Jasem and A. C. C. Tseung, J. Electrochem. Soc. 126(8) (1979) 1353.Google Scholar
  32. [32]
    J. D. C. Haenen, W. Vischer and E. Barendrecht, J. Appl. Electrochem. 15 (1985) 29.Google Scholar
  33. [33]
    B. E. Conway and T. C. Liu, Phys. Chem. 91 (1987) 4610.Google Scholar
  34. [34]
    J. E. Graves, D. Pletcher, R. L. Clarke and F. C. Walsh, J. Appl. Electrochem. 22(3) (1992) 200.Google Scholar
  35. [35]
    Atraverda Ltd., Sheffield (see [18]), company literature (1996).Google Scholar
  36. [36]
    C. J. Brown, D. Pletcher, F. C. Walsh, J. K. Hammond and D. Robinson, J. Appl. Electrochem. 24 (1994) 95.Google Scholar
  37. [37]
    P. Trinidad and F. C. Walsh, Electrochim. Acta 41(4) (1996) 493.Google Scholar
  38. [38]
    F. C. Walsh, unpublished work.Google Scholar
  39. [39]
    J. R. Smith, A. H. Nahléand F. C. Walsh, J. Appl. Electrochem. 27(7) (1997) 815.Google Scholar
  40. [40]
    BS. EN. 623-2, ‘Advanced Technical Ceramics-Monolithic Ceramics-General and Textural Properties. Part 2: Determination of density and porosity,’ CEN European Committee for Standardization, Brussels, Sept. (1993).Google Scholar
  41. [41]
    K. Ellis, Atraverda Ltd., personal communication.Google Scholar
  42. [42]
    Electrochemical Design Associates (EDA), ‘Recent Developments in Ebonex® Electrodes: Cable Electrodes’, company literature, EDA Technology, 829 Heinz street, Berkeley, CA 94710, USA (1996).Google Scholar
  43. [43]
    P. C. S. Hayfield and R. L. Clarke, in Proceedings of the Electrochemical Society Meeting, Los Angels, 7-12 May (1989).Google Scholar
  44. [44]
    L. He, H. F. Franzen, J. E. Vitt and D. C. Johnson, Electrochem. Soc. 141(4) (1994) 1014.Google Scholar
  45. [45]
    S.-Y. Park, S.-I. Mho, E. O. Chi, Y. U. Kwon and H. L. Park, Thin Solid Films 258 (1995) 5.Google Scholar
  46. [46]
    M. Mayr, W. Blatt, B. Busse and H. Heinke, 4th International Forum on Electrolysis in the Chemical Industry, Fort Lauderdale, FA, Nov. (1990).Google Scholar
  47. [47]
    CSIRO Report DMR-098, ‘Evaluation of the Effect of Ebonex® Additive on Lead-acid Battery Capacity at Different Discharge Rates’, Aug. (1995).Google Scholar
  48. [48]
    W. J. Macklin and R. J. Neat, Solid State Ionics 53-56 (1992) 694.Google Scholar
  49. [49]
    K. Kordesch, J. Gsellmann and T. Klaus, World Patent PCT Int. Appl. WO 90 02 423 (1990).Google Scholar
  50. [50]
    J. E. Mieczkowska and S. P. Markfort, US Patent 5 342 712 (1994).Google Scholar
  51. [51]
    S. Timothy, ‘Contaminated Land: Markets and Technology Issues’, Centre for Exploitation of Science and Technology, 5 Bemers Road, Islington, London (1992).Google Scholar
  52. [52]
    Department of Trade and Industry, Overseas Trade Services, ‘Soil Contamination Cleaning up in the Netherlands’, Earls Court, London, 15 Oct. (1992).Google Scholar
  53. [53]
    M. R. G. Taylor and R. A. N. McLean, ‘Overview of Cleaning-up Methods for Contaminated Sites’, London Waste Authority (1992).Google Scholar
  54. [54]
    R. Lageman, ‘Electro-reclamation’, Chem. Ind., 18 Sept. (1989) 585.Google Scholar
  55. [55]
    Department of the Environment, Contract PEPCD 7/7/138, Jan. (1991).Google Scholar
  56. [56]
    J. O’M. Bockris, ‘Environmental Applications of Electrochemical Technology’, 6th International Forum on Electrolysis in the Chemical Process Industries, Nov. (1993).Google Scholar
  57. [57]
    C. L. K. Tennakoon, R. C. Bhardwaj and J. O'M. Bockris, J. Appl. Electrochem. 26 (1996) 18.Google Scholar
  58. [58]
    R. L. Clarke and R. Pardoe, 4th International Forum on Electrolysis in the Chemical Industry, Fort Lauderdale, FA, Nov. (1990).Google Scholar
  59. [59]
    D. Brackenbury, R. L. Clarke, J. Vinson and F. C. Walsh, ‘Recent Developments in Ebonex® Electrodes’, 5th International Forum on Electrolysis in the Chemical Industry, FA, Nov. (1996).Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • J. R. Smith
    • 1
  • F. C. Walsh
    • 1
  • R. L. Clarke
    • 2
  1. 1.Applied Electrochemistry GroupUniversity of PortsmouthPortsmouthGreat Britain
  2. 2.EDA TechnologyBerkeleyUSA

Personalised recommendations