Skip to main content
Log in

Association of Cell and Substrate Adhesion Molecules with Connexin43 During Intramembranous Bone Formation

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

Prior studies in our laboratory have demonstrated an association of specific gap junction proteins with intramembranous bone formation in the avian mandible. The purpose of the present study was to extend these observations by determining if there was a relationship between the expression of one of the gap junction proteins examined previously (connexin43) and the expression of specific cell adhesion (CAM) and/or substrate adhesion (SAM) molecules [i.e. NCAM, A-CAM (N-cadherin) and tenascin (tenascin-C)] that have previously been shown to be associated with bone formation. Immunohistochemical localization of connexin43, tenascin, NCAM and N-cadherin was performed on serial sections of mandibles of chick embryos from 6 to 12 days of incubation. Analysis of adjacent serial sections revealed that the NCAM and tenascin immunostaining that appeared initially on the lateral aspect of Meckel's cartilage preceded the overt expression of trabecular bone. At subseq uent stages, NCAM and tenascin staining gradually overlapped the region of connexin43 expression. In contrast, the expression of N-cadherin was found to colocalize with that of connexin43 from the first appearance of connexin43 expression. Most significantly, although the domains of NCAM and tenascin expression were initially separate from that of connexin43, bone formation originated only in the region where these domains intersected. These findings suggest that, of the CAMs and SAMs examined, N-cadherin appears to be associated with the establishment of cell contacts responsible for the presence and/or maintenance of connexin43-mediated gap junctional communication, while tenascin and NCAM appear to be associated, in a more specific manner, with processes that accompany the overt expression of the osteogenic phenotype. © 1998 Chapman & Hall

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrianarivo, A.G., Robinson, J.A., Mann, K.G. & Tracy, R.P. (1992) Growth on type I collagen promotes expression of the osteoblast phenotype in human osteosarcoma MG-63 cells. J. Cell Physiol. 153, 256-65.

    Google Scholar 

  • Angst, B.D., Khan, L.U.R., Severs, N.J., Whitely, K., Rothery, S., Thompson, R.P., Magee, A. I. & Gourdie, R.G. (1997) Dissociated spatial patterning of gap junctions and cell adhesion junctions during postnatal differentiation of ventricular myocardium. Circ. Res. 80, 88-94.

    Google Scholar 

  • Beyer, E.C. (1990) Molecular cloning and developmental expression of two chick embryo gap junction proteins. J. Biol. Chem. 265, 14439-43.

    Google Scholar 

  • Bhargava, U., Bar-Lev, M., Bellows, C.G. & Aubin, J.E. (1988) Ultrastructural analysis of bone nodules formed in vitro by isolated fetal rat calvarial cells. Bone 9, 155-63.

    Google Scholar 

  • Carter, D.H., Sloan, P. & Aaron, J.E. (1991) Immunolocalization of collagen types I and III, tenascin, and fibronectin in intramembranous bone. J. Histochem. Cytochem. 39, 599-606.

    Google Scholar 

  • Christ, G.J., Brink, P.R., Zhao, W., Moss, J., Gondre, C.M., Roy, C. & Spray, D.C. (1993) Gap junctions modulate tissue contractility and alpha 1 adrenergic agonist efficacy in isolated rat aorta. J. Pharmacol. Exp. Ther. 266, 1054-65.

    Google Scholar 

  • Chuong, C.M., Widelitz, R.B., Jiang, T.X., Abbott, U.K., Lee, Y.S. & Chen, H.M. (1993) Roles of adhesion molecules NCAM and tenascin in limb skeletogenesis: analysis with antibody perturbation, exogenous gene expression, talpid2 mutants and activin stimulation. In Limb Development and Regeneration. (edited by Fallon, J.F. et al.), pp. 465-74. New York: Wiley-Liss.

    Google Scholar 

  • Civitelli, R., Fujimori, A., Bernier, S.M., Warlow, P.M., Goltzman, D., Hruska, K.A. & Avioli, L.V. (1992) Heterogeneous intracellular free calcium responses to parathyroid hormone correlate with morphology and receptor distribution in osteogenic sarcoma cells. Endocrinology 130, 2392-400.

    Google Scholar 

  • Civitelli, R., Beyer, E.C., Warlow, P.M., Robertson, A.J., Geist, S.T. & Steinberg, T.H. (1993) Connexin43 mediates direct intercellular communication in human osteoblastic cell networks. J. Clin. Invest. 91, 1888-96.

    Google Scholar 

  • Donahue, H.J., Mcleod, K.J., Rubin, C.T., Andersen, J., Grine, E.A., Hertzberg, E.L. & Brink, P.R. (1995) Cell-to-cell communication in osteoblastic networks: cell-line dependent hormonal regulation of gap junction function. J. Bone Min. Res. 10, 881-9.

    Google Scholar 

  • Doty, S.B. (1981) Morphological evidence of gap junctions between bone cells. Calcif. Tissue Int. 33, 509-12.

    Google Scholar 

  • Doty, S.B. (1988) Cell-to-cell communication in bone tissue. In The Biological Mechanisms of Tooth Eruption and Root Resorption (edited by Davidovitch, Z.), pp. 61-9. Birmingham, AL: Ebsco Media.

    Google Scholar 

  • Egan, J. J., Gronowicz, G. & Rodan, G.A. (1991) Parathyroid hormone promotes the disassembly of cytoskeletal actin and myosin in cultured osteoblastic cells: mediation by cyclic AMP. J. Cell. Biochem. 45, 101-11.

    Google Scholar 

  • Fagotto, F., Funayama, N., Gluck, U. & Gumbiner, B.M. (1996) Binding to cadherins antagonizes the signaling activity of β-catenin during axis formation in Xenopus. J. Cell Biol. 132, 1105-14.

    Google Scholar 

  • Frenzel, E.M. & Johnson, R.G. (1996) Gap junction formation between cultured embryonic lens cells in inhibited by antibody to N-cadherin. Dev. Biol. 179, 1-16.

    Google Scholar 

  • Fujimoto, K., Nagafuchi, A., Tsukita, S. Kuraoka, A., Ohokuma, A. & Shibata, Y. (1997) Dynamics of connexins, E-cadherin and α-catenin on cell membranes during gap junction formation. J. Cell Sci. 110, 311-22.

    Google Scholar 

  • Funayama, N., Fagotto, F., Mccrea, P. & Gumbiner, B.M. (1995) Embryonic axis induction by the armadillo repeat domain of β-catenin: evidence for intracellular signaling. J. Cell Biol. 128, 959-68.

    Google Scholar 

  • Gluhak, J., Mais, A. & Mina, M. (1996) Tenascin-C is associated with early stages of chondrogenesis by chick mandibular ectomesenchymal cells in vivo and in vitro. Dev. Dynam. 205, 24- 40.

    Google Scholar 

  • Guger, K.A. & Gumbiner, B.M. (1995) β-catenin has Wntlike activity and mimics the Nieuwkoop signaling center in Xenopus dorsal-ventral patterning. Dev. Biol. 172, 115-25.

    Google Scholar 

  • Hall, B.K. & Miyake, T. (1992) The membranous skeleton: the role of cell condensations in vertebrate skeletogenesis. Anat. Embryol. 186, 107-24.

    Google Scholar 

  • Hamburger, V. & Hamilton, H. (1951) A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49-92.

    Google Scholar 

  • Hatta, K., Takagi, S., Fujisawa, H. & Takeichi, M. (1987) Spatial and temporal expression pattern of Ncadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev. Biol. 120, 215-27.

    Google Scholar 

  • Jones, S.J., Gray, C., Sakamaki, H., Arora, M., Boyde, A., Gourdie, R. & Green C. (1993) The incidence and size of gap junctions between the bone cells in rat calvaria. Anat. Embryol. 187, 343-52.

    Google Scholar 

  • Keane, R.W., Mehta, P.P., Rose, B., Honig, L.S., Loewenstein, W.R. & Rutishauser, U. (1988) Neural differentiation, NCAM-mediated adhesion, and gap junctional communication in neuroectoderm. A study in vitro. J. Cell Biol. 106, 1307-19.

    Google Scholar 

  • Lawrence, T. S., Beers, W.H. & Gilula, N.B. (1978) Transmission of hormonal stimulation by cell-to-cell communication. Nature 272, 501-6.

    Google Scholar 

  • Lee, Y.S. & Chuong, C.M. (1992) Adhesion molecules in skeletogenesis: I. Transient expression of neural cell adhesion molecules (NCAM) in osteoblasts during endochondral and intramembranous ossification. J. Bone Min. Res. 7, 1435-46.

    Google Scholar 

  • Lynch, M.P., Stein, J.L., Stein, G.S. & Lian, J.B. (1995) The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion and extracellular matrix mineralization. Exp. Cell Res. 216, 35-45.

    Google Scholar 

  • Mackie, E. J. & Ramsey S. (1996a) Modulation of osteoblast behavior by tenascin. J. Cell Sci. 109, 1597-604.

    Google Scholar 

  • Mackie, E. J. & Ramsey, S. (1996b) Expression of tenascin in joint-associated tissues during development and postnatal growth. J. Anat. 188, 157-65.

    Google Scholar 

  • Mackie, E. J. & Tucker, R.P. (1992) Tenascin in bone morphogenesis: expression by osteoblasts and cell type-specific expression of splice variants. J. Cell Sci. 103, 765-71.

    Google Scholar 

  • Mackie, E. J., Thesleff, I. & Chiquet-Ehrismann, R. (1987) Tenascin is associated with chondrogenic and osteogenic differentiation in vivo and promotes chondrogenesis in vitro. J. Cell Biol. 105, 2569-79.

    Google Scholar 

  • Marshall, G.B., Rundus, V.R., Parker, S.B., Hertzberg, E.L. & Minkoff, R. (1995) Association of cell/ substrate adhesion molecules during osteogenesis. J. Dent. Res. 74, 65.

    Google Scholar 

  • Masi, L., Franchi, A., Santucci, M., Danielli, D., Arganini, L., Giannone, V., Formigli, L., Benvenuti, S., Tanini, A., Beghe, F., Mian, M. & Brandi, M.L. (1992) Adhesion, growth and matrix production by osteoblasts on collagen substrata. Calcif. Tissue Int. 51, 202-12.

    Google Scholar 

  • Matsuzaki, F., Mege, R-M., Jaffe, S.H., Friedlander, D.R., Gallin, W.J., Goldberg, J. I., Cunningham, B.A. & Edelman, G.M. (1990) cDNAs of cell adhesion molecules of different specificity induce changes in cell shape and border formation in cultured S180 cells. J. Cell Biol. 110, 1239-52.

    Google Scholar 

  • Mege, R-M., Matsuzaki, F., Gallin, W.J., Goldberg, J. I., Cunningham, B.A. & Edelman, G.M. (1988) Construction of epithelioid sheets by transfection of mouse sarcoma cells with cDNAs for chicken cell adhesion molecules. Proc. Natl. Acad. Sci. USA 85, 7274-8.

    Google Scholar 

  • Mege, R.M., Goudou, D., Diaz, C., Nicolet, M., Garcia, L. Geraud, G. & Rieger, F. (1992) N-cadherin and NCAM in myoblast fusion: compared localization and effect of blockade by peptides and antibodies. J. Cell Sci. 103, 897-906.

    Google Scholar 

  • Meyer, R.A., Laird, D.W., Revel, J.-P. & Johnson, R.G. (1992) Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J. Cell Biol. 119, 179-89.

    Google Scholar 

  • Miller, S.C., Saint-Georges, L. De, Bowman, B.M. & Jee, W.S.S. (1989) Bone lining cells: structure and function. Scanning Microsc. 3, 953-61.

    Google Scholar 

  • Minkoff, R., Parker, S.B., AND Hertzberg, E.L. (1991) Analysis of distribution patterns of gap junctions during development of embryonic chick facial primordia and brain. Development 111, 509-22.

    Google Scholar 

  • Minkoff, R., Rundus, V.R., Parker, S.B., Beyer, E.C. & Hertzberg, E.L. (1993) Connexin expression in the developing avian cardiovascular system. Circ. Res. 73, 71-8.

    Google Scholar 

  • Minkoff, R., Rundus, V.R., Parker, S.B., Hertzberg, E.L., Laing, J.G. & Beyer, E.C. (1994) Gap junction proteins exhibit early and specific expression during intramembranous bone formation in the developing chick mandible. Anat. Embryol. 190, 231-41.

    Google Scholar 

  • Minkoff, R., Bales, E.S., Beyer, E.C. & Guerrero, P. (1996) Craniofacial development in fetal mice lacking connexin43. J. Dent. Res. 75, 225.

    Google Scholar 

  • Minkoff, R., Bales, E.S. & Kerr, C.A. (1997b) Antisense oligonucleotide blockade of connexin expression during embryonic bone formation. J. Dent. Res. 76, 368.

    Google Scholar 

  • Minkoff, R., Parker, S.B., Rundus, V.R. & Hertzberg, E.L. (1997a) Expression patterns of connexin43 protein during facial development in the chick embryo: associations with outgrowth, attachment and closure of the midfacial primordia. Anat. Record 248, 279-90.

    Google Scholar 

  • Musil, L. S., Beyer, E.C. & Goodenough, D.A. (1990a) Expression of the gap junction protein connexin43 in embryonic chick lens: molecular cloning, ultrastructural localization, and post-translational phosphorylation. J. Membr. Biol. 116, 163-75.

    Google Scholar 

  • Musil, L. S., Cunningham, B.A., Edelman, G.M. & GOODENOUGH, D.A. (1990b) Differential phosphorylation of the gap junction protein connexin43 in junctional communication-competent and-deficient cell lines. J. Cell Biol. 111, 2077-88.

    Google Scholar 

  • Oberlender, S.A. & Tuan, R.S. (1994a) Spatiotemporal profile of N-cadherin expression in the developing limb mesenchyme. Cell Adhesion Commun. 2, 521-37.

    Google Scholar 

  • Oberlender, S.A. & Tuan, R.S. (1994b) Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development 120, 177-87.

    Google Scholar 

  • Pinero, G.J., Parker, S., Rundus, V., Hertzberg, E.L. & Minkoff, R. (1994) Immunolocalization of connexin43 in the tooth germ of the neonatal rat. Histochem. J. 26, 765-70.

    Google Scholar 

  • Reaume, A.G., de Sousa, P.A., Kulkarni, S., Langille, B.L., Zhu, D., Davies, T.C., Juneja, S.C., Kidder, G.M. & Rossant, J. (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267, 1831-4.

    Google Scholar 

  • Schiller, P.C., Mehta, P.P., Roos, B.A. & Howard, G.A. (1992) Hormonal regulation of intercellular communication: parathyroid hormone increases connexin43 gene expression and gap-junctional communication in osteoblastic cells. Mol. Endocrinol. 6, 1433- 40.

    Google Scholar 

  • Schirrmacher, K., Schmitz, I., Winterhager, E., Traub, O., Brummer, F., Jones, D, & Bingmann, D. (1992) Characterization of gap junctions between osteoblast-like cells in culture. Calcif. Tissue Int. 51, 285-90.

    Google Scholar 

  • Shapiro, F. (1988) Cortical bone repair. J. Bone Joint Surg. 70, 1067-81.

    Google Scholar 

  • Shen, V., Rifas, L., Kohler, G. & Peck, W.A. (1986) Prostaglandins change cell shape and increase inter-CAMs, SAMs, connexin43 and bone formation 895 cellular gap junctions in osteoblasts cultured from rat fetal calvaria. J. Bone Min. Res. 1, 243-9.

    Google Scholar 

  • Soler, A.P. & Knudsen, K.A. (1991) Colocalization of NCAM and N-cadherin in avian skeletal myoblasts. Dev. Biol. 148, 389-92.

    Google Scholar 

  • Tavella, S., Raffo, P., Tacchetti, C., Cancedda, R. & Castagnola, P. (1994) N-CAM and N-cadherin expression during in vitro chondrogenesis. Exp. Cell Res. 215, 354-62.

    Google Scholar 

  • Thesleff, I., Kantomaa, T., Mackie, E. J. & Chiquetehrismann, R. (1988) Immunohistochemical localization of the matrix glycoprotein tenascin in the skull of the growing rodent. Arch. Oral Biol. 33, 383-90.

    Google Scholar 

  • Tucker, R.P. (1993) The in situ localization of tenascin splice variants and thrombospondin 2 mRNA in the avian embryo. Development 117, 347-58.

    Google Scholar 

  • Tucker, R.P., Hammarback, J.A., Jenrath, D.A., Mackie, E.J. & Xu, Y. (1993) Tenascin expression in the mouse: in situ localization and induction in vitro by bFGF. J. Cell Sci. 104, 69-76.

    Google Scholar 

  • Vakeva, L., Mackie, E., Kantomaa, T. & Thesleff, I. (1990) Comparison of the distribution patterns of tenascin and alkaline phosphatase in developing teeth, cartilage and bone of rats and mice. Anat. Record 228, 69-76.

    Google Scholar 

  • Vander Molen, M.A., Rubin, C.T., Mcleod, K. J., Mccauley, L.K. & Donahue, H. J. (1996) Gap junctional intercellular communication contributes to hormonal responsiveness in osteoblastic networks. J. Biol. Chem. 271, 12165-71.

    Google Scholar 

  • Wagner, A.P., Beck, K.D. & Reck, G. (1992) Neural cell adhesion molecule (NCAM) and N-cadherin mRNA during development and aging: selective reduction in the 7.4-kb and 6.7-kb NCAM mRNA levels in the hippocampus of adult and old rats. Mech. Ageing Dev. 62, 201-8.

    Google Scholar 

  • Wang, Y. & Rose, B. (1997) An inhibition of gap-junctional communication by cadherins. J. Cell Sci. 110, 301-9.

    Google Scholar 

  • Widelitz, R.B., Jiang, T.X., Murray, B.J. & Chuong, C.M. (1993) Adhesion molecules in skeletogenesis: II. Neural cell adhesion molecules mediate precartilaginous mesenchymal condensations and enhance chondrogenesis. J. Cell Physiol. 156, 399-411.

    Google Scholar 

  • Yamamoto, T., Ochalski, A., Hertzberg, E.L. & Nagy, J. I. (1990) LM and EM immunolocalization of the gap junctional protein connexin43 in rat brain. Brain Res. 508, 313-19.

    Google Scholar 

  • Yamamoto, T., Hossain, M.Z., Hertzberg, E.L., Uemura, H., Murphy, L. J. & Nagy, J. I. (1993) Connexin43 in rat pituitary: localization at pituicyte and stellate cell gap junctions and within gonadotrophs. J. Histochem. Cytochem. 100, 53-64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rundus, V.R., Marshall, G.B., Parker, S.B. et al. Association of Cell and Substrate Adhesion Molecules with Connexin43 During Intramembranous Bone Formation. Histochem J 30, 879–896 (1998). https://doi.org/10.1023/A:1003449525619

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003449525619

Keywords

Navigation