Skip to main content
Log in

Location and Distribution of Non-collagenous Matrix Proteins in Musculoskeletal Tissues of Rat

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

The study assessed immunohistochemically the location and distribution of various non-collagenous matrix proteins (fibronectin, laminin, tenascin-C, osteocalcin, thrombospondin-1, vitronectin and undulin) in musculoskeletal tissues of rat. Fibronectin and thrombospondin-1 were found to be ubiquitous in the studied tissues. High immunoreactivity of these proteins was found in the extracellular matrix of the anatomical sites where firm bindings are needed, i.e. between muscle fibres and fibre bundles, between the collagen fibres of a tendon and at myotendinous junctions, osteotendinous junctions and articular cartilage. Tenascin-C was found in the extracellular matrix of regions where especially high forces are transmitted from one tissue component to the other, such as myotendinous junctions and osteotendinous junctions. Laminin was demonstrated in the basement membranes of the muscle cells and capillaries of the muscle–tendon units. Osteocalc in immunoreactivity concentrated in the extracellular matrix of areas of newly formed bone tissue, i.e. in the subperiosteal and subchondral regions, osteoid tissue and mineralized fibrocartilage zone of the osteotendinous junction. Mild vitronectin activity could be seen in the extracellular matrix of the osteotendinous and myotendinous junctions, and high activity around the bone marrow cells. Undulin could be demonstrated in the extracellular matrix (i.e. on the collagen fibres) of the tendon and epimysium only. However, it was co-distributed with fibronectin and tenascin-C. Together, these findings on the normal location and distribution of these non-collagenous proteins in the musculoskeletal tissues help to form the basis of knowledge against which the location and distribution of the these proteins in various pathological processes could be compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer, M., Dieterich, W., Ehnis, T. & Schuppan, D. (1997) Complete primary structure of human collagen type XIV. Biochim. Biophys. Acta 1354, 183-8.

    Google Scholar 

  • Bornstein, P. (1992) Thrombospondins: structure and regulation of expression. FASEB J. 6, 3290-9.

    Google Scholar 

  • Bornstein, P. (1995) Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. J. Cell Biol. 130, 503-6.

    Google Scholar 

  • Bornstein, P. & Sage, E.H. (1994) Thrombospondins. Methods Enzymol. 245, 62-84.

    Google Scholar 

  • Chevalier, X., Groult, N., Larget-piet, B., Zardi, L. & Hornebeck, W. (1994) Tenascin distribution in articular cartilage from normal subjects and from patients with osteoarthritis and rheumatoid arthritis. Arthr. Rheum. 37, 1013-22.

    Google Scholar 

  • Chiquet, M. & Fambrough, D.M. (1984) Chick myotendinous antigen. I. Monoclonal antibody as a marker for tendon and muscle morphogenesis. J. Cell Biol. 98, 1926-36.

    Google Scholar 

  • Chiquet-ehrismann, R. (1990) What distinguishes tenascin from Fibronectin? FASEB J. 4, 2598-604.

    Google Scholar 

  • Chiquet-ehrismann, R. (1995) Tenascins, a growing family of extracellular matrix proteins. Experientia 51, 853-62.

    Google Scholar 

  • Chiquet-ehrismann, R., Kalla, P., Pearson, C.A., Beck, K. & Chiquet, M. (1988) Tenascin interferes with Fibronectin action. Cell 53, 383-90.

    Google Scholar 

  • Chiquet-ehrismann, R., Tannerheim, M., Koch, M., Brunner, A., Spring, J., Martin, D., Baumgartner, S. & Chiquet, M. (1994) Tenascin-C expression by Fibroblasts is elevated in stressed collagen gels. J. Cell Biol. 127, 2093-101.

    Google Scholar 

  • Chuong, C.M., Widelitz, R.B., Jiang, T.X., Abbott, L.P.K., Lee, Y.S. & Chen, H.M. (1993) Roles of adhesion molecules NCAM and tenascin in limb skeletogenesis: analysis with antibody pertubation, exogenous gene expression, talpid mutants and active stimulation. Prog. Clin. Biol. Res. 383B, 465-74.

    Google Scholar 

  • Cockburn, C.G. & Barnes, M. J. (1991) Characterization of thrombospondin binding to collagen (type I) Fibres: role of collagen telopeptides. Matrix 11, 168-76.

    Google Scholar 

  • Ducy, P., Desbois, C., Boyce, B., Pinero, G., Story, B., Dunstan, C., Smith, E., Bonadio, J., Goldstein, S., Gundberg, C., Bradley, A. & Karsenty, G. (1996) Increased bone formation in osteocalcin-deFIcient mice. Nature 382, 448-52.

    Google Scholar 

  • Ehnis, T., Dieterich, W., Bauer, M. Kresse, H. & Schuppan, D. (1997).Localization of a binding site for the proteoglycan decorin on collagen XIV (undulin). J. Biol. Chem. 272, 20414-19.

    Google Scholar 

  • Erickson, H.P. (1993) Tenascin-C, tenascin-R and tenascinX: a family of talented proteins in search of functions. Curr. Opin. Cell Biol. 5, 869-76.

    Google Scholar 

  • Frazier, W.A. (1987) Thrombospondin: a modular adhesive glycoprotein of platelets and nucleated cells. J. Cell Biol. 105, 625-32.

    Google Scholar 

  • Garnero, P., Grimaux, M., Seguin, P. & Delmas, P.D. (1994) Characterization of immunoreactive forms of human osteocalcin generated in vivo and in vitro. J. Bone Miner. Res. 9, 255-64.

    Google Scholar 

  • Gebb, C., Hayman, E.G., Engvall, E. & Ruoslahti, E. (1986) Interactions of vitronectin with collagen. J. Biol. Chem. 261, 16698-703.

    Google Scholar 

  • Glumoff, V., Savontaus, M., Vesanen, J. & Vuorio, E. (1994) Analysis of aggrecan and tenascin gene expression in mouse skeletal tissues by Northern and in situ hybridization using speciFIc cDNA probes. Biochim. Biophys. Acta 1219, 613-22.

    Google Scholar 

  • Grzesik, W. & Gehron-robey, P. (1994) Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J. Bone Miner. Res. 9, 487-96.

    Google Scholar 

  • Horton, M.A., Dorey, E.L., Nesbitt, S.A., Samanen, J., Ali, F.E., Stadel, J.M., Nichols, A., Greig, R. & Helfrich, M.H. (1993) Modulation of vitronectin receptor-mediated osteoclast adhesion by Arg-glyasp peptide analogs: a structure-function analysis. J. Bone Miner. Res. 8, 239-47.

    Google Scholar 

  • Hurme, T. (1991) Regeneration of injured skeletal muscle: an experimental study with rats. Academic dissertation, Medica-Odontologica, series D, vol. 82. University of Turku, Turku, Finland.

    Google Scholar 

  • Hurme, T. & Kalimo, H. (1992) Adhesion in skeletal muscle during regeneration. Muscle Nerve 15, 482-9.

    Google Scholar 

  • Hynes, R.O. (1986) Fibronectins. Sci. Am. 254, 42-51.

    Google Scholar 

  • Ingram, R.T., Park, Y-K., Clarke, B.L. & Fitzpatrick, L.A. (1994) Age-and gender-related changes in the distribution of osteocalcin in the extracellular matrix of normal male and female bone. J. Clin. Invest. 93, 989-97.

    Google Scholar 

  • Irintchev, A., Salvini, T.F., Faissner, A. & Wernig, A. (1993) Differential expression of tenascin after denervation, damage or paralysis of mouse soleus muscle. J. Neurocytol. 22, 955-65.

    Google Scholar 

  • JÄrvinen, M., Kannus, P., Kvist, M., Isola, M J., Lehto, M. & Jozsa, L. (1991) Macromolecular composition of the myotendinous junction. Exp. Mol. Pathol. 55, 230- 7.

    Google Scholar 

  • Jozsa, L. & Kannus, P. (1997) Human Tendons. Anatomy, Physiology, and Pathology. Champaign, IL, USA: Human Kinetics.

    Google Scholar 

  • Jozsa, L., Lehto, M., Kannus, P., Kvist, M., Reffy, A., Vieno, T., JÄrvinen, M., Demel, S. & Elek, E. (1989) Fibronectin and laminin in Achilles tendon. Acta Orthop. Scand. 60, 469-71.

    Google Scholar 

  • Jozsa, L., Kvist, M., Kannus, P., Vieno T., JÄrvinen, M. & Lehto, M. (1991) Structure and macromolecular composition of the myotendinous junction. Acta Morphol. Hung. 39, 287-97.

    Google Scholar 

  • Just, M., Herbst, H., Hummel, M., DÜrkop, H.T., Tri-pier, D., Stein, H. & Schuppan, D. (1991) Undulin is a novel member of the Fibronectin-tenascin family of extracellular matrix glycoproteins. J. Biol. Chem. 266, 17326-32.

    Google Scholar 

  • Kannus, P., Jozsa, L., Kvist, M., JÄrvinen, T.L.N., Maunu, V-M., Hurme, T. & JÄrvinen, M. (1996) Expression of osteocalcin in the patella of experimentally immobilized and remobilized rats. J. Bone Miner. Res. 11, 79-87.

    Google Scholar 

  • Kvist, M., Jozsa, L., Kannus, P., Isola, J., Vieno, T., JÄrvinen, M. & Lehto, M. (1991) Morphology and histochemistry of the myotendineal junction of the rat calf muscles. Acta Anat. 141, 199-205.

    Google Scholar 

  • Lawler, J.W. (1986) Review: the structural and functional properties of thrombospondin. Blood 67, 1192-204.

    Google Scholar 

  • Lehto, M., Duance, V.C. & Restall, D. (1985) Collagen and Fibronectin in the healing skeletal muscle injury. J. Bone Joint Surg. 66B, 820-8.

    Google Scholar 

  • Lehto, M., Kvist, M., Vieno, T. & Jozsa, L. (1988) Macromolecular composition of the sarcolemma and endomysium in the rat. Acta Anat. 133, 297-302.

    Google Scholar 

  • Mackie, E. J. & Ramsey, S. (1996) Expression of tenascin in joint-associated tissues during development and postnatal growth. J. Anat. 188, 157-65.

    Google Scholar 

  • Miller, R.R. & Mcdevitt, C.A. (1988) Thrombospondin is present in articular cartilage and is synthesized by articular chondrocytes. Biochem. Biophys. Res. Commun. 153, 708-14.

    Google Scholar 

  • Neurath, M. (1993) Expression of tenascin, laminin and Fibronectin following traumatic rupture of the anterior cruciate ligament. Z. Orthop. 131, 168-72.

    Google Scholar 

  • Neurath, M.F. & Stofft, E. (1992) Structure and function of matrix components in the cruciate ligaments. Acta Anat. 145, 387-94.

    Google Scholar 

  • Reilly, J.T. & Nash, J.R.G. (1988) Vitronectin (serum spreading factor): its localisation in normal and FIbrotic tissue. J. Clin. Pathol. 41, 1269-72.

    Google Scholar 

  • Risteli, L. & Risteli, J. (1993) Biochemical markers of bone metabolism. Ann. Med. 25, 385-93.

    Google Scholar 

  • Roberts, D.D. (1996) Regulation of tumor growth and metastasis by thrombospondin-1. FASEB J. 10, 1183- 91.

    Google Scholar 

  • Robey, P.G., Young, M.F., Fischer, L.W. & Mcclain, T.D. (1989) Thrombospondin is an osteoblast-derived component of mineralized extracellular matrix. J. Cell Biol. 108, 719-27.

    Google Scholar 

  • Ruoslahti, E. (1988) Fibronectin and its receptors. Annu. Rev. Biochem. 57, 375-413.

    Google Scholar 

  • Salter, D.M. (1993) Tenascin is increased in cartilage and synovium from arthritic knees. Br. J. Rheumatol. 32, 780-6.

    Google Scholar 

  • Schuppan, D., Cantaluppi, M.C., Becker, J., Veit, A., Bunte, T., Troyer, D., Schuppan, F., Schmid, A., Ackermann A. & Hahn, E.G. (1990) Undulin, an extracellular matrix glycoprotein associated with collagen FIbrils. J. Biol. Chem. 265, 8823.

    Google Scholar 

  • Timpl, R. & Brown, J.C. (1994) The laminins. Minireview. Matrix Biol. 14, 275-81.

    Google Scholar 

  • WÄlchli, C., Trueb, J., Kessler, B., Winterhalter, K.H. & Trueb, B. (1993).Complete primary structure of chicken collagen XIV. Eur. J. Biochem. 212, 483-90.

    Google Scholar 

  • Webb, C.M.B., Zaman, G., Mosley, J.R., Tucker, R.P., Lanyon, L.E. & Mackie, E. J. (1997) Expression of tenascin-C in bones responding to mechanical load. J. Bone Miner. Res. 12, 52-8.

    Google Scholar 

  • Wewer, U. & Engvall, E. (1994) Laminins. Methods Enzymol. 245, 85-104.

    Google Scholar 

  • Wight, T.N., Raugi, G. J., Mumby, S.M. & Bornstein, P. (1985) Light microscopic immunolocation of thrombospondin in human tissues. J. Histochem. Cytochem. 33, 295-302.

    Google Scholar 

  • Young, M.F., Kerr, J.M., Ibaraki, K., Heegaard, A.M. & Robey, P.G. (1992) Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin. Orthop. 281, 275- 94.

    Google Scholar 

  • Zhang, X., Schuppan, D., Becker, J., Reichart, P. & Gelderblom, H.R. (1993) Distribution of undulin, tenascin, and Fibronectin in the human periodontal ligament and cementum: comparative immunoelectron microscopy with ultra-thin cryosections. J. Histochem. Cytochem. 41, 245-51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kannus, P., Jozsa, L., Järvinen, T.A.H. et al. Location and Distribution of Non-collagenous Matrix Proteins in Musculoskeletal Tissues of Rat. Histochem J 30, 799–810 (1998). https://doi.org/10.1023/A:1003448106673

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003448106673

Keywords

Navigation