Skip to main content
Log in

Diel dynamics of bacterioplankton activity in eutrophic shallow Lake Võrtsjärv, Estonia

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The diel dynamics of bacterio- and phytoplankton as main compartments in the pelagic foodweb were followed in order to assess the coupling between algal photosynthesis and bacterial growth during a diel cycle in Lake Võrstjärv, Estonia. Three diurnal studies were carried out, on July 12th–13th, 1994; on June 25th–26th, 1995 and on July 17th–18th, 1995 with a sampling interval of 3–4 hours. Diel variations in bacterial number, biomass and productivity, in phytoplankton primary production and extracellular release of photosynthetic products, in ciliate number and biomass were followed. Phytoplankton was dominated by filamentous species: Limnothrix redekei, Oscillatoria sp., Aulacoseira (Melosira) ambigua and Planktolyngbya limnetica. The abundance of bacteria ranged from 4.1 to 14.6 · 1012 cells m-2 (median 9.88). The production of heterotrophic bacteria varied from 0.6 to 11 mgC m-2 h-1 (median 3.65), the variation during diel cycle was high. Depth integrated values of particulate (PPpart) and extracellular primary production (PPdiss) ranged from 6 to 55 and from 17 to 90 mgC m- 2 h-1, respectively. About 50 ciliate taxa were identified among them more abundant were bacterivores, bacterivores- herbivores and omnivores. Biomass of bacterivorous ciliates (TCbact) varied from 8 to 427 mgC m-2. Bacterioplankton production constituted not more than 20% of total primary production (particulate + released), dynamics of bacterial production was related to the primary production, the correlation was negative with PPpart and positive with PPdiss. Different types of potential controlling factors of bacterioplankton (N and P nutrient control, bottom-up control by food and top-down control) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baines, S. B. & M. L. Pace, 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria — patterns across marine and freshwater systems. Limnol. Oceanogr. 36: 1078–1090.

    Google Scholar 

  • Beaver, J. R. & T. L. Crisman, 1982. The trophic response of ciliated protozoans in freshwater lakes. Limnol. Oceanogr. 27: 246–253.

    Google Scholar 

  • Beaver, J. R., T. L. Crisman & R. W. Biernert, 1988. Distribution of planktonic ciliates in highly colored subtropical lakes: Comparison with clearwater ciliate communities and the contribution of mixotrophic taxa to total autotrophic biomass. Freshwat. Biol. 20: 51–60.

    Article  Google Scholar 

  • Bell, R. T., 1990. An explanation for the variability in the conversion factor deriving bacterial cell production from the incorporation of [3H]thymidine. Limnol. Oceanogr. 35: 910–915.

    CAS  Google Scholar 

  • Bergström, I., A. Heinänen & K. Salonen, 1986. Comparison of acridine orange, acriflavine and bisbenzimide stains for enumeration of bacteria in clear and humic waters. Appl. Envir. Microbiol. 51: 664–667.

    Google Scholar 

  • Biddanda, B., S. Opsahl & R. Benner, 1994. Plankton respiration and carbon flux through bacterioplankton on the Louisiana Shelf. Limnol. Oceanogr. 39: 1259–1275.

    Article  CAS  Google Scholar 

  • Billen, G., P. Servais & S. Becquevort, 1990. Dynamics of bacteriaplankton in oligotrophic and eutrophic aquatic environments: bottom-up or top-down control? Hydrobiologia 207: 37–42.

    Article  Google Scholar 

  • Blight, S. P., T. L. Bentley, D. Lefevre, C. Robinson, R. Rodrigues, J. Rowlands & P. JleB. Williams, 1995. Phasing of autotrophic and heterotrophic plankton metabolism in a temperate coastal ecosystem. Mar. Ecol. Prog. Ser. 128: 61–75.

    Google Scholar 

  • Bratbak, G., 1985. Bacterial biovolume and biomass estimations. Appl. Envir. Microbiol. 49: 1488–1493.

    CAS  Google Scholar 

  • Bratbak, G., M. Heldal, T. F. Thingstad, B. Riemann & O. H. Haslund, 1992. Incorporation of viruses into the budget of microbial C-transfer. A first approach. Mar. Ecol. 83: 273–280.

    Google Scholar 

  • Bresta, A.-M., C. Ursin & L. M. Jensen, 1987. Intercomparison of 14C-labeled bicarbonate solutions prepared by different institutes for measurement of primary productivity in natural waters and monoalgal cultures. J. Plankton Res. 9: 317–325.

    Google Scholar 

  • Chin-Leo, G. & D. L. Kirchman, 1988. Estimating bacterial production in marine waters from the simultaneous incorporation of thymidine and leucine. Appl. Envir. Microbiol. 54: 1934–1939.

    CAS  Google Scholar 

  • Cole, J. J., G. E. Likens & D. L. Strayer, 1982. Photosynthetically produced dissolved organic carbon: An important carbon source for planktonic bacteria. Limnol. Oceanogr. 27: 1080–1090.

    CAS  Google Scholar 

  • Del Giorgio, P. A., J. M. Gasol, D. Vaque, P. Mura, S. Agusti and C. M. Duarte, 1996. Bacterioplankton community structure: portists control net production and the proportion of active bacteria in a coastal marine community. Limnol. Oceanogr. 41: 1169–1179.

    Article  Google Scholar 

  • Ducklow, H. W., 1992. Factors regulating bottom-up control of bacteria biomass in open ocean plankton communities. Arch. Hydrobiol. Beih. Ergebn. Limnol. 37: 207–217.

    Google Scholar 

  • Ducklow, H. W., D. L. Kirchman and H. L. Quinby, 1992. Bacterioplankton cell growth and macromolecular synthesis in seawater cultures during the North Atlantic spring phytoplankton bloom, May, 1989. Microb. Biol. 24: 125–144.

    CAS  Google Scholar 

  • Fenchel, T., 1980a. Relation between particle size selection and clearance in suspension feeding ciliates. Limnol. Oceanogr. 25: 735–740.

    Google Scholar 

  • Fenchel, T., 1980b. Suspension feeding in ciliated protozoa. Functional response and particle size selection. Feeding rates and their ecological significance. Microb. Ecol. 6: 13–25.

    Article  Google Scholar 

  • Fenchel, T., 1982. Ecology of heterotrophic flagellates. II. Bioenergetics and growth. Mar. Ecol. Prog. Ser. 8: 225–231.

    Google Scholar 

  • Fenchel, T., 1987. Ecology of Protozoa. Science Technical, Madison, Wisconsin.

    Google Scholar 

  • Fenchel, T. & B. J. Finlay, 1989. Respiration rates in heterotrophic free-living Protozoa. Microb. Biol. 9: 99–122.

    Google Scholar 

  • Foissner, W., H. Blatterer, H. Berger & F. Kohmann, 1991. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems — Band I. Cyrtophorida, Oligotrichida, Hypotrichi, Colpodea. — Informations-berichte des Bayerischen Landesamtes für Wasserwirtschaft 1/91.

  • Foissner, W., H. Berger & F. Kohmann, 1992. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems — Band II. Peritrichia, Heterotrichida, Odontostomatida. — Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft 5/92.

  • Foissner, W., H. Berger & F. Kohmann, 1994. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems — Band III. Hymenostomata, Prostomatida, Nassulida. — Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft 1/94.

  • Foissner, W., H. Berger, H. Blatterer & F. Kohmann, 1995. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems — Band IV. Gymnostomatea, Loxodes, Suctoria. — Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft 1/95.

  • Gasol, J. M., C. M. Duarte, N. Guixa, K. Jürgens, C. Pedros-Alio, D. Vaque & E. Vazquez, 1996. Controls of bacterial abundance in the open ocean: Analysis of data from different oceanic provinces by different empirical and experimental methods. In Fifth European Marine Microbiology Symposium Bergen Aug 11–15, 1996.

  • Gasol, J., J. Garcia-Cantizano, R. Massana, F. Peters, R. Guerrero & C. Pedros-Alio, 1991. Diel changes in the microstratification of the metalimnetic community in Lake Ciso. Hydrobiologia 211: 227–240.

    Article  Google Scholar 

  • Gilron, G. L. & D. H. Lynn, 1989. Assuming a 50% cell occupancy of the lorica overestimates tintinnine biomass. Mar. Biol. 103: 413–416.

    Article  Google Scholar 

  • Güde, H., 1989. The role of grazing on bacteria in plankton succession. In U. Sommer (ed.), Plankton Ecology: Succession in Plankton Communities. Springer-Verlag, Berlin Heidelberg New York: 337–364.

    Google Scholar 

  • Haney, J. F., 1988. Diel patterns of zooplankton behaviour. Bull. mar. Sci. 43: 583–603.

    Google Scholar 

  • Heinänen, A., 1992. Bacterioplankton in the open sea. Ph.D. Dissertation, Faculty of Science of the University of Helsinki, 30 pp.

  • Ingraham, J. L., O. Maaloe & F. C. Neidhardt, 1985. Growth of the bacterial cell. Sinauer Association, Sunderland, Mass.

    Google Scholar 

  • Jahnke, R. A. & D. B. Craven, 1995. Quantifying the role of heterotrophic bacteria in the carbon cycle: A need for respiration rate measurements. Limnol. Oceanogr. 40: 436–441.

    Article  CAS  Google Scholar 

  • Jeffrey, S. & G. F. Humprey, 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie and physiologie der pflanzen. Biochemie and Physiologie der Pflanzen 167: 191–194.

    CAS  Google Scholar 

  • Kira, T., 1994. Data book of world lake environments — A survey of the state of World lakes. ILEC, Kutsatsu, Japan: 689–705.

    Google Scholar 

  • Kirchman, D. L., H. W. Ducklow & R. Mitchell, 1982. Estimates of bacterial growth from changes in uptake rates and biomass. Appl. Envir. Microbiol. 44: 1296–1307.

    CAS  Google Scholar 

  • Kirchman, D. L., E. K'Nees & R. Hodson, 1985. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl. Envir. Microbiol. 49: 599–607.

    CAS  Google Scholar 

  • Kirchman, D. L., Y. Suzuki, C. Garside & H. W. Ducklow, 1991. High turnover rates of dissolved organic carbon during a spring phytoplankton bloom. Nature 352: 612–614.

    Article  CAS  Google Scholar 

  • Kutikova, L. A. & A. J. Starobogatov, 1977. A key to freshwater invertebrates of European USSR plankton and benthos. Gidrometeizdat, Leningrad (in Russian).

  • Laybourn-Parry, J., 1992. Protozoan Plankton Ecology. Chapman & Hall, Ltd., London.

    Google Scholar 

  • Lignell, R., 1990. Algal exudation and its relation to bacterial production during vernal phytoplankton blooms. Arch. Hydrobiol. Beih. 34: 53–59.

    Google Scholar 

  • Lignell, R., 1992. Problems in filtration fractionation of 14C primary productivity samples. Limnol. Oceanogr. 37: 172–178.

    CAS  Google Scholar 

  • Lins Da Silva, N. M., 1991. Etude de la repartition spatio-temporelle des peuplements microbiens planctoniques en Mer Ligure (Mediterranee Nord-Occidentale). These Doctorat Oceanogr. Biol., Paris.

  • Logan, B. E. & R. C. Fleury, 1993. Multiphasic Kinetics Can Be an Artifact of the Assumption of Saturable Kinetics for Microorganisms. Mar. Ecol. Prog. Ser. 102: 115–124.

    Google Scholar 

  • Marrase, C., E. L. Lim & D. A. Caron, 1992. Seasonal and daily changes in bacteriovory in a coastal plankton community. Mar. Ecol. 82: 281–289.

    Article  Google Scholar 

  • Mitchel, J. G., A. Okubo & J. A. Fuhrman, 1985. Microzones surrounding phytoplankton from the basis for a stratified marine microbial ecosystem. Nature 316: 58–59.

    Article  Google Scholar 

  • McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.

    Article  Google Scholar 

  • Niemi, M., J. Kuparinen, A. Uusi-Rauva & K. Korhonen, 1983. Preparation of algal samples for liquid scintillation counting. Hydrobiologia 106: 149–159.

    Article  CAS  Google Scholar 

  • Nõges, P., 1995. Long-term decrease in phyto-and bacterioplankton abundance in shallow, strongly eutrophic Lake Võrtsjärv (Estonia): Seeming or real improvement of the trophic state? 6th International Conference conservation & Management Lakes — Kasumigaura 1995 2: 818–821.

    Google Scholar 

  • Patterson, D. J. & S. Hedley, 1992. Free-living freshwater protozoa. A colour guide. Wolfe Publishing Ltd., England.

    Google Scholar 

  • Pomeroy, L. R.,W. J. Wiebe, D. Deibel, R. J. Thompson, G. T. Rowe & J. D. Pakulski, 1991. Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom. Mar. Ecol. Prog. Ser. 75: 143–159.

    Article  Google Scholar 

  • Riemann, B. & M. Søndergaard, 1984. Measurements of diel rates of bacterial secondary production in aquatic environments. Appl. Envir. Microbiol. 47: 632–638.

    CAS  Google Scholar 

  • Sakamoto, M., 1966. Primary production by the phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch. Hydrobiol. Beih. 62: 1–28.

    Google Scholar 

  • Schweitzer, B & M. Simon, 1995. Growth limitation of planktonic bacteria in a large mesotrophic lake. Microb. Ecol. 30: 89–104.

    Article  Google Scholar 

  • Sherr, E. B. & B. F. Sherr, 1984. Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems. In. M. J. Klug & C. A. Reddy (eds), Current Perspectives in Microbial Ecology. Am. Soc. Microbiol., Washington: 412–423.

    Google Scholar 

  • Simon, M. & F. Azam, 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201–213.

    CAS  Google Scholar 

  • Søndergaard, M., 1980. Adsorption of inorganic carbon-14 to polyethylene scintillation vials — a possible error in measures of extracellular release of organic carbon. Arch. Hydrobiol. 90: 362–366.

    Google Scholar 

  • Smith, V. H., 1979. Nutrient dependence of primary productivity in lakes. Limnol. Oceanogr. 24: 1051–1064.

    Google Scholar 

  • Steeman-Nielsen, E., 1952. The use of radioactive carbon (14C) for measuring primary production in the sea. J. Con. Inter. Explor. Mer. 18: 117–140.

    Google Scholar 

  • Šimek, K., M. Macek, J. Seda & V. Vyhnálek, 1990a. Possible food chain relationships between bacterioplankton, protozoans, and cladocerans in a reservoir. — Int. Rev. ges. Hydrobiol. 75: 583– 596.

    Google Scholar 

  • Šimek, K., M. Macek & V. Vyhnálek, 1990b. Uptake of bacteriassized fluorescent particles by natural protozoan assemblage in a reservoir. — Ergeb. Limnol. 34: 275–281.

    Google Scholar 

  • Takamura, N., A. Otsuki, M. Aizaki & Y. Noijri, 1992. Phytoplankton species shift accompanied by transition from nitrogen dependence to phosphorus dependence of primary production in Lake Kasumigaura, Japan. Arch. Hydrobiol. Beih. 124: 129–148.

    Google Scholar 

  • Tamminen, T., J. Kuparinen & R. Lignell, 1984. Diurnal cycles of phytoplankton exudation and bacterial uptake of organic substrates. Arch. Hydrobiol. Beih. 19: 267–279.

    CAS  Google Scholar 

  • Tulonen, T., 1993. Bacterial production in a mesohumic lake estimated from [14C]leucine incorporation rate. Microb. Biol. 26: 210–217.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplanktonmethodik. Mitt. int. Ver. Theor. Angew. Limnol. 9: 1–38.

    Google Scholar 

  • Wiebe, W. J., W. M. Sheldon & L. R. Pomeroy, 1993. Evidence for an Enhanced Substrate Requirement by Marine Mesophilic Bacterial Isolates at Minimal Growth Temperatures. Microb. Biol. 25: 151–159.

    Google Scholar 

  • Wikner, J., F. Rassoulzadegan & Å. Hagström, 1990. Periodic bacterivore activity balances bacterial growth in the marine environment. Limnol. Oceanogr. 35: 313–324.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kisand, V., Nõges, T. & Zingel, P. Diel dynamics of bacterioplankton activity in eutrophic shallow Lake Võrtsjärv, Estonia. Hydrobiologia 380, 93–102 (1998). https://doi.org/10.1023/A:1003444016726

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003444016726

Navigation