Skip to main content
Log in

Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide: a comparison of the activities of various electrode formulations

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper describes the development of electrochemical processes for the oxidative degradation of toxic organic chemicals in waste waters. Doped bismuth lead dioxide anodes have been tested by the kinetic study of phenol anodic oxidation in aqueous solution. The main products during oxidative degradation of phenol are 1,4- benzoquinone, maleic acid and carbon dioxide. Several deposits of Bi2O5–PbO2 on Ti/(IrO2–Ta2O5) substrates have been prepared by anodic oxidation of Pb2+ and Bi3+ in aqueous solutions containing perchloric acid to increase the solubility of bismuth. To study the effect of perchlorate ions, the efficiency of the PbO2 deposit prepared from lead nitrate in an aqueous solution (pure PbO2) was compared with that of a deposit prepared from perchloric acid solution (perchlorate doped PbO2). Although the phenol is oxidized at the same rate on the two deposits, the charge corresponding to the total elimination of 1,4-benzoquinone is three times higher for perchlorate doped PbO2 than for pure PbO2. Phenol degradation is more efficiently carried out on a PbO2 anode doped with perchlorate and with bismuth than on the same electrode doped only with perchlorate. Among the electrodes tested in this work, the pure PbO2 anode is the most efficient for phenol degradation. It is assumed that certain active sites on the anode occupied by perchlorate ions do not participate in the transfer of oxygen atoms and that for the PbO2 electrode doped with bismuth, oxygen evolution is favoured to the detriment of oxygen atom transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Vitt and D. C. Johnson, J. Electrochem. Soc. 139 (1992) 774.

    Google Scholar 

  2. Ch. Comninellis and C. Pulgarin, J. Appl. Electrochem. 23 (1993) 108.

    Google Scholar 

  3. N. Belhadj Tahar, Thesis, Université Paul Sabatier, Tou-louse (1996).

  4. N. Belhadj Tahar and A. Savall, in 'Fundamentals and Potential Applications of Electrochemical Synthesis', edited by R. D. Weaver, F. Fisher, F. R. Kalhammer and D. Mazur, (The Electrochemical Society, Penning-ton, NJ, 1997), pp. 198–206.

    Google Scholar 

  5. N. Belhadj Tahar and A. Savall, submitted to J. Electro-chem. Soc. 145 (1998) 3427.

    Google Scholar 

  6. H. Sharifian and D. W. Kirk, J. Electrochem. Soc. 133 (1986) 921.

    Google Scholar 

  7. M. Gattrell and D. W. Kirk, Can. J. Chem. Eng. 68 (1990) 997.

    Google Scholar 

  8. Ch. Comninellis and C. Pulgarin, J. Appl. Electrochem. 121 (1991) 703.

    Google Scholar 

  9. M. Gattrell and D. W. Kirk, J. Electrochem. Soc. 140 (1993) 1534.

    Google Scholar 

  10. E. Brillas, R. M. Bastida and E. Liosa, ibid. 142 (1995) 1733.

    Google Scholar 

  11. A. Savall and N. Belhadj Tahar, in 'Environmental Technologies and Trends', Proceed. Earthcare, edited by R. K. Jain, Y. Aurelle, C. Cabassud, M. Roustan and S. P. Shelton, (Springer-Verlag, Berlin, 1996), pp. 262–269.

    Google Scholar 

  12. N. Belhadj Tahar and A. Savall, J. New Mater. Electro-chem. Syst. (in press).

  13. B. Fleszar and J. Ploszynska, Electrochim. Acta. 30 (1985) 31.

    Google Scholar 

  14. H. Chang and D. C. Johnson, J. Electrochem. Soc. 136 (1989) 17.

    Google Scholar 

  15. I. H. Yeo, S. Kim, R. Jacobson and D. C. Johnson, ibid. 136 (1989) 1395.

    Google Scholar 

  16. Ch. Comninellis, Electrochim. Acta 39 (1994) 1857.

    Google Scholar 

  17. J. Feng, L. L. Hook and D. C. Johnson, J. Electrochem. Soc. 142 (1995) 3626.

    Google Scholar 

  18. I. H. Yeo and D. C. Johnson, ibid. 134 (1987) 1973.

    Google Scholar 

  19. W. R. Lacourse, Y. L. Hsiao and D. C. Johnson, ibid. 136 (1989) 3714.

    Google Scholar 

  20. J. C. Grigger, H. C. Miller and F. D. Loomis, ibid. 105 (1958) 100.

    Google Scholar 

  21. K. C. Narasimham and H. V. K. Udupa, ibid. 123 (1976) 1294.

    Google Scholar 

  22. N. Munichandraiah, and S. Sathyanarayama, J. Appl. Electrochem. 17 (1987) 22.

    Google Scholar 

  23. N. Munichandraiah, ibid. 22 (1992) 825.

    Google Scholar 

  24. J. Rolewicz, Ch. Comninellis, E. Plattner and J. Hinden, Electrochim. Acta. 33 (1988) 573.

    Google Scholar 

  25. L. Papouchado, R. W. Sandford, G. Petrie and R. N. Ad-ams, J. Electroanal. Chem. 65 (1975) 275.

    Google Scholar 

  26. M. Fleischmann, I. R. Hill, G. Mengoli and M. M. Musiani, Electrochim. Acta. 28 (1983) 1545.

    Google Scholar 

  27. B. S. Nielsen, J. L. Davis and P. A. Thiel, J. Electrochem. Soc. 137 (1990) 1017.

    Google Scholar 

  28. C. N. Ho and B. J. Hwang, Electrochim. Acta. 38 (1993) 2749.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belhadj Tahar, N., Savall, A. Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide: a comparison of the activities of various electrode formulations. Journal of Applied Electrochemistry 29, 277–283 (1999). https://doi.org/10.1023/A:1003433519200

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003433519200

Navigation