Skip to main content
Log in

Effect of chloride concentration range on the corrosion resistance of Cu–xNi alloys

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The anodic behaviour of Cu–xNi alloys and Cu and Ni metals was studied in slightly alkaline solutions containing Cl−-ions in the concentration range from 0.01 to 2.0moldm−3. The morphology and composition of the surface films formed by anodic polarization were analysed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). On the basis of quasi-potentiodynamic polarization data, Ec against cNaCl diagrams were constructed, where Ec is the critical pitting potential. These diagrams allow the determination of areas where the materials are susceptible to localized pitting attack. A critical chloride concentration (ccrit) exists below which the resistance to localized corrosion increases with decreasing nickel content and above which it increases with increasing nickel content. This effect is connected with the change in the corrosion resistance observed for the pure metal constituents, i.e., copper and nickel as a function of chloride concentration. The kinetic parameters of pitting corrosion of Cu–xNi alloys reflect the specific properties of both elements and suggest that an increase in Ni content above 40% would not have a significant effect on the corrosion resistance of Cu–xNi alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Blundy and M. J. Pryor, Corros. Sci. 12 (1972) 65.

    Google Scholar 

  2. R. F. North and M. J. Pryor, Corros. Sci. 10 (1970) 297.

    Google Scholar 

  3. H. Shih and H. W. Pickering, J. Electrochem. Soc. 134 (1987) 1949.

    Google Scholar 

  4. A.-M. Beccaria and J. Crousier, Br. Corros. J. 24 (1989) 49.

    Google Scholar 

  5. C. Kato, B. G. Ateya, J. E. Castle and H. W. Pickering, J. Electrochem. Soc. 127 (1980) 1897.

    Google Scholar 

  6. J. M. Popplewell and R. J. Hart, J. A. Ford, Corros. Sci. 13 (1973) 295.

    Google Scholar 

  7. R. Gasparini, C. Della Rocca and E. loannilli, Corros. Sci. 10 (1970) 157.

    Google Scholar 

  8. F. L. LaQue, J. Am. Nav. Engrs. 53 (1941) 29.

    Google Scholar 

  9. J. H. Sinfelt, J. L. Carter and D. J. C. Yates, J. Catal. 24 (1972) 283.

    Google Scholar 

  10. M. M. Jakšić, Electrochim. Acta 29 (1984) 1539.

    Google Scholar 

  11. K. Lohrberger and P. Kohl, Electrochim. Acta 29 (1984) 1557.

    Google Scholar 

  12. H. Ezaki, M. Morinaga S. Watanabe and J. Saito, Electrochim. Acta 39 (1994) 1769.

    Google Scholar 

  13. I. Milošev and Metikoš-Huković, J. Electrochem. Soc. 138 (1991) 61.

    Google Scholar 

  14. Idem, Corrosion 48 (1992) 185.

    Google Scholar 

  15. M. Metikoš-Huković and I. Milošev, J. Appl. Electrochem. 22 (1992) 448.

    Google Scholar 

  16. H.-D. Speckmann, M. M. Lohrengel, J. W. Schultze and H.-H. Strehblow, Ber. Bunsenges. Phys. Chem. 89 (1985) 392.

    Google Scholar 

  17. H.-H. Strehblow and B. Titze, Electrochim. Acta 25 (1980) 839.

    Google Scholar 

  18. S. M. Abd El Halee and B. G. Ateya, J. Electroanal. Chem. 117 (1981) 309.

    Google Scholar 

  19. M. R. G. de Chialvo, S. L. Marchiano and A. J. Arvia, J. Appl. Electrochem. 14 (1984) 165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milošev, I., Metikoš-huković, M. Effect of chloride concentration range on the corrosion resistance of Cu–xNi alloys. Journal of Applied Electrochemistry 29, 393–402 (1999). https://doi.org/10.1023/A:1003426701670

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003426701670

Navigation