Skip to main content
Log in

Selective electrosynthesis of p-methoxybenzaldehyde at spinel type CoMn2O4/titanium-composite anodes

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Activated titanium anodes with a spinel coating of CoMn2O4 of about 1μm thickness were developed. A relative stability in acid electrolytes was found. The novel anode was employed for the anodic oxidation of p-methoxytoluene (PMT) to p-methoxybenzaldehyde (PMB), which is of industrial interest. Batch type electrolyses with 30% theoretical conversion (4Fmol−1) were used for␣a parametric screening. The solvent/electrolyte-system was 1m H2SO4/5m H2O in methanol. Optimum results (60% selectivity, 50–60% current efficiency) were obtained at low concentrations of the educt (0.2m). A part of the current is consumed for the formation of the benzylmethylether, which can be further oxidized to PMB. It was proved that the novel anode operates according to the mechanism of heterogeneous redox catalysis with ter- and heptavalent manganese as the redox species. A turnover factor of >2000 is unusual for a spinel in acid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Pletcher and F. C. Walsh, `Industrial Electrochemistry', 2nd edn, Chapman & Hall, London (1989).

    Google Scholar 

  2. D. Degner, Top. Current Chem. 148 (1988) 1–95.

    Google Scholar 

  3. F. Beck, Kagaku to Kogyo 43(12) (1990) 1997.

    Google Scholar 

  4. German Patent 2 848 397 (BASF, D. Degner, M. Barl and H. Hannebaum, 1978).

  5. F. Beck, B. Wermeckes and Siyu Ye, DECHEMA Monographs 125 (1992) 753.

    Google Scholar 

  6. H. Beer, GDR-Pat. 55 223 (prior. date 12.5.1965), Belgium-Patent 710 551 (2/67).

  7. F. Beck and H. Schulz, Electrochim. Acta 29 (1984) 1569.

    Google Scholar 

  8. B. Wermeckes and F. Beck, ibid. 30 (1985) 1491.

    Google Scholar 

  9. J. P. Millington, A. R. Jones, A. J. Hughes and J. E. Trotman, British Patent 2 164 935 (1986).

  10. Ch. Comninellis, J. Electrochem. Soc. 129 (1992) 749.

    Google Scholar 

  11. Idem, J. Appl. Electrochem. 17 (1992) 1315.

    Google Scholar 

  12. L. Eberson and K. Nyberg, J. Am. Chem. Soc. 88 (1966) 1686.

    Google Scholar 

  13. Idem, Acc. Chem. Res. 6 (1973) 106.

    Google Scholar 

  14. A. Nilsson, V. Palmquist, T. Petterson and A. Ronlan, J. Chem. Soc., Perkin Trans. I 1978 708.

  15. E. Lodowicks and F. Beck, Chem. Engng Techn. 17 (1994) 338.

    Google Scholar 

  16. E. Lodowicks, PhD thesis, University of Duisburg (1996).

  17. L. D. Burke, J. F. Healy and O. J. Murphy, J. Appl. Electrochem. 13 (1983) 469.

    Google Scholar 

  18. `Powder Diffraction File', edited by Joint Committee of the Powder Diffraction Standards (JCPDS), Swarthmore, PA (1974).

    Google Scholar 

  19. G. Prokhvatilov, Sov. Phys. Crystallogr. 10 (1965) 191.

    Google Scholar 

  20. G. Kreysa and H. Medin, J. Appl. Electrochem. 16 (1986) 557.

    Google Scholar 

  21. J. Hlavaty, J. Appl. Electrochem. 24 (1994) 989.

    Google Scholar 

  22. P. Seiler, EP 30 588 (1981).

  23. J. S. Clarke, R. E. Ehigamusoe and A. T. Kuhn, J. Electroanal. Chem. 70 (1976) 333.

    Google Scholar 

  24. J. P. Millington, Swiss Patent 597 369 (1978).

  25. Y.-L. Hsiao and D. C. Johnson, J. Electrochem. Soc. 136 (1989) 3704.

    Google Scholar 

  26. I.-H. Yeo and D. C. Johnson, ibid. 134 (1987) 1973.

    Google Scholar 

  27. F. Beck and H. Schulz, Ber. Bunsenges. Phys. Chem. 88 (1984) 155.

    Google Scholar 

  28. F. Beck and H. Schulz, J. Appl. Electrochem. 17 (1987) 914.

    Google Scholar 

  29. D. Degner and H. Siegel, DE 2 855 508 (1980).

  30. D. Degner, H. Roos and H. Hannebaum, EP 72 914 (1983).

  31. M. A. Halter and T. P. Malloy, US 212 710 (1980).

  32. S.-M. Lin and T.-C. Wen, J. Appl. Electrochem. 25 (1995) 73.

    Google Scholar 

  33. D. Degner, H. Ross and H. Hannebaum, DE 3 132 726 (1982).

  34. J. Yoshida and K. Ogura, J. Org. Chem. 49 (1984) 3419.

    Google Scholar 

  35. F. Beck, W. Gabriel and H. Schulz, DECHEMA Monographs 102 (1986) 339.

    Google Scholar 

  36. F. Beck, B. Wermeckes and E. Zimmer, ibid. 112 (1988) 257.

    Google Scholar 

  37. M. R. Tarasevich and B. M. Efrimov, Properties of Spinel-type Oxide Electrodes, in `Electrodes of Conductive Metal Oxides' Vol. A (edited by S. Trasatty), Elsevier, Amsterdam (1980).

    Google Scholar 

  38. J. Farcy, J. P. Pereira-Ramos, L. Hernan, J. Morales, J. L. Tirado, Electrochim. Acta 39 (1994) 339.

    Google Scholar 

  39. P. J. Wojtowicz, Phys. Rev. 116 (1959) 32.

    Google Scholar 

  40. M. Rosenberg and P. Nicolau, Phys. Stat. Sol. 6 (1964) 101.

    Google Scholar 

  41. B. Boucher, R. Buhl and M. Berrin, Acta Crystallogr. 25 Sect. B (1969) 2326.

    Google Scholar 

  42. J. P. Brenet and J. F. Koenig, Z. Phys. Chem. 98 (1975).

  43. J. P. Brenet, Power Sources 4 (1979) 183.

    Google Scholar 

  44. J. L. Gautier, R. Fuentealba and C. Cabezas, Z. Phys. Chem. 126 (1981) 71.

    Google Scholar 

  45. V. A. M. Brabers and J. C. M. Terhell, Phys. Stat. Sol. A 69 (1982) 325.

    Google Scholar 

  46. J. L. Gautier and C. Cabezas, J. Electroanal. Chem. 159 (1983) 137.

    Google Scholar 

  47. M. Lenglet, J. Lupitaux and R. Guillamet, Mater. Chem. Phys. 14 (1986) 199.

    Google Scholar 

  48. E. D. Macklen, J. Phys. Chem. Solids 47 (1986) 1073.

    Google Scholar 

  49. J. Goodenough, J. Phys. Rad. 20 (1959) 155.

    Google Scholar 

  50. G. H. Jonker and S. van Houten, Halbleiterprobleme 6 (1961) 118.

    Google Scholar 

  51. P. Scheftel, Sov. Phys. Sol. State 7(11) (1966) 2781.

    Google Scholar 

  52. B. Boucher, R. Buhl and M. Perrin, J. Appl. Phys. 39 (1968) 632.

    Google Scholar 

  53. A. Meenakshisundaram, N. Gunasekaran and V. Srinivasan, Phys. Stat. Sol A 69 (1982) K 15.

    Google Scholar 

  54. A. Feltz and M. Ottlinger, Z. Chem. 29 (1989) 338.

    Google Scholar 

  55. F. Haber and S. Ginsberg, Z. Anorg. Allg. Chem. 18 (1988) 37.

    Google Scholar 

  56. G. Grube, Z. Elektrochem. 33 (1927) 389.

    Google Scholar 

  57. R. Kötz, H. J. Lewerenz, P. Brüesch and S. Stucki, J. Electroanal. Chem. 150 (1983) 209.

    Google Scholar 

  58. P. Rasiyah and A. C. C. Tseung, J. Electrochem. Soc. 131 (1984) 803.

    Google Scholar 

  59. H. Wendt, Chem. Ing. Tech. 45 (1973) 1303.

    Google Scholar 

  60. Idem, J. Mol. Catal. 38 (1986) 89.

    Google Scholar 

  61. F. Beck and H. Guthke, Chem. Ing. Tech. 41 (1969) 943.

    Google Scholar 

  62. F. Beck, Electrochim. Acta 18 (1973) 359.

    Google Scholar 

  63. Idem, Pure Appl. Chem. Spec. Suppl. XXIV. IUPAC Congr. 5 (1974) 111.

    Google Scholar 

  64. P. M. Robertson, P. Cettou, D. Matie, F. Schwager, A. Storek and M. Ibl. AlChE Symposium Series 185 75 (1979) 115.

    Google Scholar 

  65. P. Seiler and P. M. Robertson, Chimia 36 (1982) 305.

    Google Scholar 

  66. R. Roberts, R. P. Ouellette and P. N. Cheremisinoff, `Industrial Applications of Electroorganic Synthesis', Ann Arbor Science Publishers, MI (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lodowicks, E., Beck, F. Selective electrosynthesis of p-methoxybenzaldehyde at spinel type CoMn2O4/titanium-composite anodes. Journal of Applied Electrochemistry 28, 873–880 (1998). https://doi.org/10.1023/A:1003416421327

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003416421327

Navigation