Skip to main content
Log in

Electrolytic removal of lead using a flow-through cell with a reticulated vitreous carbon cathode

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The aim of this work was to establish an electrolytic method for the removal of lead from wastewater using a three-dimensional, reticulated vitreous carbon cathode. During the development of the experimental setup, particular attention was paid to the electrolyte flow rate and to the cathode porosity. The electrolytic cell employed potential values in such a way that the lead reduction reaction occurred under mass transport control. The potentials were determined by hydrodynamic voltammetry using a borate/nitrate solution as the supporting electrolyte on a viterous carbon rotating disc electrode. The cell proved to be efficient in removing lead and was able to reduce the levels of this metal to 0.1mgdm-3 in 20min of recirculation, using the ratio catholyte volume/cathode volume equal to 0.027. The best configuration for this removal was a cathode porosity of 80ppi and a solution flow rate of 240dm3h-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Alkire and P. K. Ng, J. Electrochem. Soc. 124 (1977) 1220.

    Article  CAS  Google Scholar 

  2. A. Tentorio and U. Casolo-Ginelli, J. Appl. Electrochem. 8 (1978) 195.

    Article  CAS  Google Scholar 

  3. R. E. Sioda and H. Piotrowska, Electrochim. Acta 25 (1980) 331.

    Article  CAS  Google Scholar 

  4. D. Simonssom, J. Appl. Electrochem. 14 (1984) 595.

    Article  Google Scholar 

  5. R. Carta, S. Palmas, A. M. Polcaro and G. Tola, ibid. 21 (1991) 793.

    Article  CAS  Google Scholar 

  6. D. Pletcher, I. White, F. C. Walsh and J. P. Millington, ibid. 21 (1991) 659.

    Article  CAS  Google Scholar 

  7. D. Pletcher, I. White, F. C. Walsh and J. P. Millington, ibid. 21 (1991) 667.

    Article  CAS  Google Scholar 

  8. J. Wang and H. D. Dewald, J. Electrochem. Soc. 130 (1983) 1814.

    Article  CAS  Google Scholar 

  9. M. Abda, Z. Gaura and Y. Oren, J. Appl Electrochem. 21 (1991) 734.

    Article  CAS  Google Scholar 

  10. Y. Oren and A. Soffer, Electrochim. Acta 28 (1983) 1649.

    Article  CAS  Google Scholar 

  11. M. Matlosz and J. Newman, J. Electrochem. Soc. 133 (1986) 1850.

    Article  CAS  Google Scholar 

  12. S. Langlois, J. O. Nanzer and F. Coeuret, J. Appl Electrochem. 19 (1989) 736.

    Article  CAS  Google Scholar 

  13. J. O'M. Bockris, R. C. Bhardwaj and C. L. K. Tennakoon, Analyst 119 (1994) 781.

    Article  Google Scholar 

  14. H. A. Waldron, (Ed.), ‘Metals in the Environment’, Academic Press, London (1980), pp. 155-97.

    Google Scholar 

  15. R. Boeckx, Anal. Chem. 58 (1986) 274A.

    Article  CAS  Google Scholar 

  16. Water Regulations Act, US Environment Protection Agency, Washington, DC, (1989) and Brazilian Legislation: Resolucção CONAMA n°. 20 (1986).

  17. C. Ponce de Leon and Derek Pletcher, Electrochim. Acta 41 (1996) 533.

    Article  Google Scholar 

  18. J. Wang, ibid. 26 (1981) 1721.

    Article  CAS  Google Scholar 

  19. R. Greef, R. Peat, L. M. Peter and D. Pletcher, ‘Instrumental Methods In Electrochemistry’ Ellis Horwood, Chichester (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Widner, R.C., Sousa, M.F.B. & Bertazzoli, R. Electrolytic removal of lead using a flow-through cell with a reticulated vitreous carbon cathode. Journal of Applied Electrochemistry 28, 201–207 (1998). https://doi.org/10.1023/A:1003286810393

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003286810393

Navigation