Skip to main content
Log in

Optimal potential–time programming in electrochemical batch reactors

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In an electrochemical stirred batch reactor where a series of two reactions A harr B harr D takes place, two practical dynamic optimization problems were analysed. More specifically, the optimal profiles of electrode potential which achieve the following performances are determined: (i) maximize the final concentration of product B in a specified batch period tf and fixed final conversion rate of product A; (ii) minimize the terminal time tf required to reach a specified selectivity of B. The reaction considered here is the reduction of oxalic acid (A) to glyoxilic acid (B) followed by the reduction of glyoxilic acid to glycollic acid (D). The optimization is carried out by means of Pontryagin's maximum principle and the computational technique used is the control vector iteration method. The influence of the liquid/solid mass transfer coefficients is mainly investigated. It is shown that, for low conversion rates, the optimized and static operating modes achieve the same performances. For high conversion rates however, the performances obtained in realistic operating conditions by applying optimized electrode potential profiles, are substantially improved with respect to best static electrode potential values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Doco, G. Valentin and A. Storck, Récents Progrés en Génie Chimique, Phénomènes fondamentaux, Vol. 3., Tec & Doc, Lavoisier, Paris (1989), p. 164.

    Google Scholar 

  2. D. J. Pickett and Y. Yap, J. Appl. Electrochem. 4 (1974) 17.

    Google Scholar 

  3. L. Weise, Thèse de doctorat de I'INPL, LSGC-ENSIC, Nancy, France (1987).

    Google Scholar 

  4. G. P. Sakellaropoulos, AIChE J. 25 (1979) 781.

    Google Scholar 

  5. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, ‘The Mathematical Theory of Optimal Processes’, Pergamon Press, New York (1964).

    Google Scholar 

  6. A. E. Bryson and Y. C. Ho, Applied Optimal Control, Hemisphere Publishing Corporation, Washington (1975).

    Google Scholar 

  7. W. H. Ray and J. Szekely, ‘Process Optimisation’, J. Wiley & Sons, New York (1973).

    Google Scholar 

  8. E. S. Lee, AIChE J. 10 (1964) 309.

    Google Scholar 

  9. M. T. Asrar and A. S. Moharir, Computers & Chem. Engng 15 (1991) 533.

    Google Scholar 

  10. J. Lee and W. F. Ramirez, AIChE J. 40 (1994) 899.

    Google Scholar 

  11. D. Tieu, W. R. Cluett and A. Penlidis, Polym. React. Engng 2 (1994) 275.

    Google Scholar 

  12. M. A. Latifi, S. Risson, and A. Storck, Entropie 163 (1991) 37.

    Google Scholar 

  13. P. S. Fedkiw and R. Bakshi, J. Appl. Electrochem. 23 (1993) 715.

    Google Scholar 

  14. K. Scott, Electrochim. Acta. 30 (1985) 235.

    Google Scholar 

  15. F. Fournier and M. A. Latifi, The 5th World Congress of Chemical Engineering, Vol 1, 14–18 July (1996) San Diego, CA, p. 9.

    Google Scholar 

  16. F. Fournier and M. A. Latifi, Chem. Engng Comm. (1996) in press.

  17. P. Terwiesch, M. Agarwal and D. W. T. Rippin, J. Proc. Control. 4 (1994) 238.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fournier, F., Latifi, M.A. Optimal potential–time programming in electrochemical batch reactors. Journal of Applied Electrochemistry 28, 351–357 (1998). https://doi.org/10.1023/A:1003280103550

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003280103550

Navigation