Skip to main content
Log in

Survival strategies of some species of the phytoplankton community in the Barra Bonita Reservoir (São Paulo, Brazil)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The dynamics of the phytoplankton community in the Barra Bonita Reservoir (São Paulo, Brazil) were studied through daily sampling in the field (integrated samples from the euphotic zone) and microcosm experiments, for two short periods: the winter of 1993 (June 30 to July 10) and the summer of 1994 (January 24 to February 2). The goal of the study was to evaluate and compare the variations in the composition of isolated phytoplankton community which occur over short periods of time. Three series were separated into Erlenmeyer flasks for each study period, with samples from the euphotic zone divided into three portions: total, smaller than 64 µm, and smaller than 20 µm. All of the Erlenmeyer flasks were inclubated in situ at the sampling station. The maximum period of incubation was 10 d. Variations of the community in the euphotic zone were characterised by high diversity and a community in a state of non-equilibrium in winter, without the predominance of any species. In the summer, the community presented a low diversity and a state of equilibrium, with the predominance of Microcystis aeruginosa. The microcosm experiments showed that the confinement of the community in the Erlenmeyer flasks, and therefore in isolation from the physical variability of the ecosystem, especially in relation to the mixing patterns, stimulated the return of the community to the initial phases of succession with the predominance of small species and those which grow rapidly (r-selective or C-strategist).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association, 1985. Standard methods for the examination of water and wastewater. Byrd Prepress Springfield, Washington, 1134 pp.

    Google Scholar 

  • Arauzo, M. & M. A. Cobelas, 1994. Phytoplankton strategied and time scales in a eutrophic reservoir. Hydrobiologia 291: 1–9.

    Article  CAS  Google Scholar 

  • Bell, R. T. & I. Ahlgren, 1987. Thymidine incorporation and microbial respiration in the surface sediment of a hypertrophic lake. Limnol. Oceanogr. 32: 476–482.

    CAS  Google Scholar 

  • Calijuri, M. C., 1988. Respostas fisioecológicas da comunidade fitoplanctônica e fatores ecológicos em ecossistemas em diferentes estágios de eutrofização. Doctoral dissertation. PPG, Hidráulica e Saneamento, EESC, University of São Paulo, 293 pp.

  • Calijuri, M. C. & A. C. A. Dos Santos, 1996. Short term changes in the Barra Bonita reservoir (São Paulo, Brazil): emphasis on the phytoplankton communities. Hydrobiologia 330: 163–175.

    Article  Google Scholar 

  • Calijuri, M. L., M. C. Calijuri, L. Rios & J. G. Tundisi, 1995. The Use of Geographical Information Systems as a Tool for a Holistic View of Watershed and Reservoir Compartmentalization. Annual of the Ninth Annual Symposium on Geographic Information Systems. Vancouver, British Columbia, Canada: 697–703.

    Google Scholar 

  • Capblancq, J. & J. Catalan, 1994. Phytoplankton: which, and how much? In Margalef R. (ed.), Limnology Now: a paradigm of planetary problems. Elsevier Science B.V. Amsterdam, The Netherlands: 9–31.

    Google Scholar 

  • Carney, H. J. & C. R. Goldman, 1988. Seasonal phytoplankton r-and K-selection in oligotrophic Lake Tahoe. Verh. int. Ver. Limnol. 23: 672–676.

    Google Scholar 

  • Carrillo, P., I. Reche, P. Sanchez-Castilho & L. Cruz-Pizarro, 1995. Direct and indirect effects of grazing on the phytoplankton seasonal succession in an oligotrophic lake. J. Plankton. Res. 17: 1363–1379.

    Google Scholar 

  • Connell J., 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1304–1310.

    Google Scholar 

  • Dos Santos, A. C. A., 1996. Biomassa e estrutura da comunidade fitoplanctônica em curtos periodos de tempo no Reservatório de Barra Bonita S.P. Master of Science dissertation. PPG, Hidráulica e Saneamento, EESC, University of São Paulo, 169 pp.

  • Fogg, G. E., 1975. Algal cultures and phytoplankton ecology. 2nd edn. The University of Wisconsin Press, 175 pp.

  • Ganf, G. G., 1974. Diurnal mixing and the vertical distribution of phytoplankton in a shallow equatorial lake, Lake George, Uganda. J. Ecol. 62: 611–629.

    Article  Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohnstad, 1978. Methods for Chemical and Physical Analysis of Freshwater. IBP Handbook No. 8. Blackwell Scientific Publications, Oxford, 213 pp.

    Google Scholar 

  • Grime, J. P., 1979. Competition and the struggle for existence. In R. M. Anderson, B. D. Turner & L. R. Taylor (eds), Population Dynamics. The 20th symposium of the British Ecological Society. Blackwell Scientific Publs, London: 123–139.

    Google Scholar 

  • Haney, J. F. 1987. Field studies on zooplankton-cyanobacteria interactions. N. Z. J. Mar. Freshwat. 21: 467–475.

    Article  Google Scholar 

  • Happey-Wood, C. M., 1988. Ecology of freshwater planktonic green algae. In C. D. Sandgren (ed.), Growth and reproductive strategies of freshwater phytoplankton. Cambridge Univ. Press, Cambridge: 175–226.

    Google Scholar 

  • Harris, G. P., 1986. Phytoplankton Ecology: structure, function and fluctuation. Chapman and Hall, 384 pp.

  • Henry, R., K. Hino, J. G. Gentil & J. C. Tundisi, 1985. Primary production and effects of enrichment with nitrate and phosphate on phytoplankton in Barra Bonita Reservoir State of São Paulo, Brazil. Int. Rev. ges. Hydrobiol. 70: 561–573.

    CAS  Google Scholar 

  • Holm, N. P. & D. E. Armstrong, 1981. Role of nutrient limitation and competition in controlling the populations of Asterionella formosa and Microcystis aeruginosa in semicontinuous culture. Limnol. Oceanogr. 26: 622–634.

    CAS  Google Scholar 

  • Humohries, S. E. & V. D. Lyne, 1988. Cyanophyte blooms: The role of cell byoyancy. Limnol. Oceanogr. 33: 79–91.

    Google Scholar 

  • Istvánovics, V., J. Padisák, K. Petterson & D. C. Pierson, 1994. Growth and phosphorous uptake of summer phytoplankton in Lake Erken, Sweden. J. Plankton. Res. 16: 1167–1196.

    Google Scholar 

  • Kalff, J. & R. Knoechel, 1978. Phytoplankton and their dynamics in oligotrophic and eutrophic lakes. Ann. Rev. Ecol. Syst. 9: 475– 495.

    Article  Google Scholar 

  • Kilham, P. & S. S. Kilham, 1980. The evolutionary ecology of phytoplankton. In I. Morris (ed.), The physiological ecology of phytoplankton. Blackwell, Oxford: 571–597.

    Google Scholar 

  • Klaveness, D., 1988. Ecology of the Cryptomonadida: a first review. In S. D. Sandgren (ed.), Growth and reproductive strategies of freshwater phytoplankton. Cambridge Univ. Press, Cambridge: 105–133.

    Google Scholar 

  • Klaver, D. M. & D. F. Millie, 1994. Regulation of phytoplankton dynamics in a Laurentian Great Lakes estuary. Hydrobiologia 286: 97–108.

    Article  Google Scholar 

  • Lam, C. W. Y & W. B. Silvester, 1979. Growth interactions among blue-green Anabaena oscillarioides, Microcystis aeruginosa and green Chlorella sp. algae. Hydrobiologia 63: 135–143.

    Article  Google Scholar 

  • Lucas, W. J. & J. A. Berry, 1985. Inorganic carbon uptake by aquatic photosynthetic organisms. Am. Soc. Plant. Physiologist, Waverly Press, Baltimore.

    Google Scholar 

  • Lund, J.W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimates by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Løvstad, Ø., 1984. Competitive ability of laboratory batch phytoplankton populations at limiting nutrient levels. Oikos 42: 176–184.

    Google Scholar 

  • Mackereth, F. J. H., J. Heron & J. E. Talling, 1978. Water analysis: some revised methods for limnologists. Freshwater Biological Association. Sci. Publ. No. 36. Titus. Wilson and sons, Kendall, 117 pp.

    Google Scholar 

  • Makulla, A. & U. Sommer, 1993. Relationships between resource ratios and phytoplankton species composition during spring in five north German lakes. Limnol. Oceanogr. 38: 846–856.

    Article  CAS  Google Scholar 

  • Margalef, R., 1976. Limnologia de los embalses españoles. Universidade de Barcelona, Madrid, 423 pp.

    Google Scholar 

  • Margalef, R., 1978. Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta. 1: 493–509.

    Google Scholar 

  • Nush, E. A. & G. Palme, 1975. Biologische Methoden für die Praxis der Gewasseruntersuchung. Gwf-Wasser/Abwasser 116: 562–565.

    Google Scholar 

  • Odum, E. P., 1983. Ecologia. Ed Guanabara. Rio de Janeiro, 434 pp.

    Google Scholar 

  • Odum, H. T. & C. M. Hoskin, 1957. Metabolism of a laboratory stream microcosm. Publ. Inst. Mar. Sci. Univ. Texas 4: 115–133.

    Google Scholar 

  • Ollason, J. G., 1977. Freshwater microcosms in fluctuating environments. Oikos 28: 262–269.

    Google Scholar 

  • Paerl, H.W., 1988. Growth and reproductive strategies of freshwater blue-green algae cyanobacteria. In C. D. Sandgren (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge Univ. Press, Cambridge: 261–315.

    Google Scholar 

  • Pautova, L. A., V. N. Pautova & V. A. Silkin, 1989. Phytoplankton succession in a large waterbody. In J. Salánki & S. Herodek (eds), Conservation and management of lakes. Symp. Biol. Hung. 38: 117–121.

  • Pianka, E., 1970. Evolutionary Ecology (editora), Omega.

  • Porter, K. G., 1972. A method for the in situ study of zooplankton grazing effects on algal species composition and standing crop. Limnol. Oceanogr. 17: 913–917.

    Google Scholar 

  • Reynolds, C. S., 1982. Phytoplankton periodicity: its motivation, mechanisms and manipulation. Ann. Report Freshwat. Biol. Ass. 50: 60–75.

    Google Scholar 

  • Reynolds, C. S., 1984a. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwat. Biol. 14: 111–142.

    Article  Google Scholar 

  • Reynolds, C. S., 1984b. The ecology of Freshwater Phytoplankton. Cambridge Univ. Press, Cambridge, 380 pp.

    Google Scholar 

  • Reynolds, C. S., 1988a. Functional morphology and adaptive strategies of freshwater phytoplankton. In C. D. Sandgren (ed.), Growth and reproductive strategies of freshwater phytoplankton. Cambridge Univ. Press, Cambridge: 388–433.

    Google Scholar 

  • Reynolds, C. S., 1988b. The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Verh. int. Ver. Limnol. 23: 681–691.

    Google Scholar 

  • Reynolds, C. S., 1996. The plant life of the pelagic. Verh. int. Ver. Limnol. 26: 97–113.

    Google Scholar 

  • Reynolds, C. S. & J. B. Reynolds, 1985. The atypical seasonality of phytoplankton in Crose Mere, 1972: an independent test of the hypothesis that variability in the physical environment regulates community dynamics and structure. Br. phycol. J. 20: 227–242.

    Google Scholar 

  • Reynolds, C. S., G. H. M. Jaworski, H. A. Cmiech & G. F. Leedale, 1981. On the annual cycle of the blue-green algae Microcystis aeruginosa Kütz. emed. Elenkin. Phil. Trans. r. Soc. Lond. Serie B. 293: 419–478.

    Google Scholar 

  • Reynolds, C. S., R. L. Oliver & A. E. Walsby, 1987. Gyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. N. Z. J. Mar. Res. 21: 379–390.

    Google Scholar 

  • Rhee, G. Y. & I. J. Gotham, 1980. Optimum N:P ratios and coexistence of planktonic algae. J. Phycol. 16: 486–489.

    Article  CAS  Google Scholar 

  • Romo, S. & M. R. Miracle, 1994a. Population dynamics and ecology of subdominant phytoplankton species in a shallow hypertrophic lake, Albufera of Valencia, Spain. Hydrobiol. 273: 37–56.

    Article  Google Scholar 

  • Romo, S. & M. R. Miracle, 1995. Diversity of the phytoplankton assemblages of a polymitic hypertrophic lake. Arch. Hydrobiol. 132: 363–384.

    Google Scholar 

  • Sandgren, S. D., 1988. The ecology of chrysophyte flagellates: their growth and perenation strategies, as freshwater phytoplankton. In C. D. Sandren (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge Univ. Press, Cambridge: 9–104.

    Google Scholar 

  • SETAC, 1992. Report of workshop on aquatic microcosms for ecological assessment of pesticides. Foundation for Environmental Education. World Wildlife Fund, 135 pp.

  • Shapiro, J., 1990. Current beliefs regarding dominance by bluegreens. The case for the importance of CO2 and pH. Verh. int. Ver. Limnol 24: 38–54.

    Google Scholar 

  • Sommer, U., 1981. The role of r-and K-selection in the succession of phytoplankton in Lake Constance. Acta Oecol. 2: 327–342.

    Google Scholar 

  • Sommer, U., 1985. Seasonal succession of phytoplankton in Lake Constance. Bioscience 35: 351–357.

    Article  Google Scholar 

  • Sommer, U., 1988a. Phytoplankton succession in microcosm experiments under simultaneous grazing pressure and resource limitation. Limnol. Oceanogr. 33: 1037–1054.

    Article  Google Scholar 

  • Sommer, U., 1988b. Growth and survival strategies of plankton succession. In U. Sommer (ed.), Plankton Ecology – Succession in Plankton Communities. Springer Series in Contemporary Bioscience: 57–106.

  • Sommer, U., 1991. Convergent succession of phytoplankton in microcosms with different inoculum species composition. Oecologia 87: 171–179.

    Article  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in freshwaters. Arch. Hydrobiol. 106: 433–371.

    Google Scholar 

  • Sommer, U., J. Padisak, C. S. Reynolds & P. Juhasz-Nagy, 1993. Hutchinson's heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1–8.

    Article  Google Scholar 

  • Sterner, R. G., 1989. The role of grazers in phytoplankton succession. In U. Sommer (ed.), Plankton Ecology: Succession in Plankton Communities. Springer Series of Contemporary Bioscience: 107–170.

  • Strickland, J. D. & T. R. Parsons, 1960. A manual of sea water analysis. Bull. Fish. Res. Bd Can. 125: 1–185.

    Google Scholar 

  • Takamura, N., M. Yasuo & K. Sugahara, 1984. Overwintering of Microcystis aeruginosa Kütz. in a shallow lake. J. Plankton Res. 6: 1019–1029.

    Google Scholar 

  • Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Ann. Rev. Ecol. Syst. 13: 349–372.

    Article  Google Scholar 

  • Turpim, D. H., 1988. Physiological mechanisms in phytoplankton resource competition. In S. D. Sandren (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge Univ. Press, Cambridge: 316–368.

    Google Scholar 

  • Uthernohl, H., 1958. On the perfecting of quantitative phytoplankton methods. Int. Ass. Theor. appl. Limnol. Commun. 9.

  • Vincent, W. F., 1989. Cyanobacterial growth and dominance in two eutrophic lakes: review and synthesis. Arch. Hydrobiol. Beith. Ergebr. Limnol. 32: 239–254.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1991. Limnological Analysis. 2nd edn. Springer-Verlag, 391 pp.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dos Santos, A.C.A., Calijuri, M.C. Survival strategies of some species of the phytoplankton community in the Barra Bonita Reservoir (São Paulo, Brazil). Hydrobiologia 367, 139–151 (1998). https://doi.org/10.1023/A:1003276016149

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003276016149

Navigation