Skip to main content
Log in

Mixed convection mass transfer studies of opposing and aiding flow in a parallel plate electrochemical flow cell

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Studies of combined natural and forced convection in a vertical parallel plate electrochemical cell in laminar conditions in cases of opposing and aiding flow are reported. In an ongoing project it was necessary to identify conditions in which natural convection had no significant influence on mass transfer rates at the cell walls so that data could be validly compared with purely laminar flow computational models. For the different electrode lengths investigated, natural convection dominated at low Reynolds number and there was no Reynolds number dependence. At high Reynolds number the data approached the laminar flow solution. At intermediate Reynolds number, however, there existed a distinct region where free and forced convection were significant. At high electrolyte concentrations data did not merge with laminar flow equations until Re=1000 and low electrolyte concentration data for the large plate could not be compared with numerical predictions below Re of 250. An attempt was made to compare the data with those of other workers on combined forced and natural convection heat and mass transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Tao, J. Heat Transf. 82C (1960) 233.

    Google Scholar 

  2. A. A. Szewczyk, ibid. 86C (1964) 501.

    Google Scholar 

  3. J. Gryzagoridis, Int. J. Heat Mass Transf. 18 (1975) 911.

    Google Scholar 

  4. S. Tsurono and I. Iguchi, J. Heat Transf. 101 (1979) 573.

    Google Scholar 

  5. L. S. Yao, ibid. 109 (1987) 440.

    Google Scholar 

  6. S. W. Churchill, AIChE J. 23 (1977) 10.

    Google Scholar 

  7. N. Ramachandran, B. F. Armaly, and T. S. Chen, J. Heat Transf. 107 (1985) 635.

    Google Scholar 

  8. C. J. Kobus and G. L. Wedekind, Int. J. Heat Mass Transf. 39 (1996) 2723.

    Google Scholar 

  9. G. L. Wedekind and C. J. Kobus, ibid. 39 (1996) 2843.

    Google Scholar 

  10. C. W. Tobias and R. G. Hickman, Z. Phys. Chem. 229 (1965) 145.

    Google Scholar 

  11. A. A. Wragg and T. K. Ross, Electrochim. Acta 12 (1967) 1421.

    Google Scholar 

  12. A. A. Wragg, ibid. 16 (1971) 373.

    Google Scholar 

  13. R. H. Perry and C. H. Chilton, ‘Chemical Engineer’s Handbook’, 5th edn, McGraw-Hill, New York (1963).

    Google Scholar 

  14. J. C. Bazan and A. J. Arvia, Electrochim. Acta 10 (1965) 1025.

    Google Scholar 

  15. J. L. Taylor and T. J. Hanratty, ibid. 19 (1974) 529.

    Google Scholar 

  16. C. F. Oduoza, A. A. Wragg and M. A. Patrick, University of Exeter Technical Report, Brite-Euram III, BE95-1232 (1995).

  17. I. Rousar, J. Hostomsky, V. Cezner and B. Stverak, J. Electrochem. Soc. 118 (1971) 881.

    Google Scholar 

  18. M. G. Fouad and T. Gouda, Electrochim. Acta 9 (1964) 1071.

    Google Scholar 

  19. A. A. Wragg, Int. J. Heat Mass Transf. 11 (1968) 979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oduoza, C.F., Wragg, A.A. & Patrick, M.A. Mixed convection mass transfer studies of opposing and aiding flow in a parallel plate electrochemical flow cell. Journal of Applied Electrochemistry 28, 697–702 (1998). https://doi.org/10.1023/A:1003242027158

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003242027158

Navigation