Skip to main content

Salinity and fish effects on Salton Sea microecosystems: benthos

Abstract

The Salton Sea, the largest lake in California, has a surface elevation 69 m below sea level which is maintained predominantly by the balance of agricultural runoff and evaporation. The lack of outflowing streams is resulting in a gradual buildup of salts in the lake, increasing the salinity. A 15 month microcosm experiment was conducted to determine the effects of salinity and tilapia ( Oreochromis mossambicus) on an assemblage of benthic and planktonic Salton Sea algae and invertebrates. This article reports the responses of the benthic invertebrates. Microcosms (312 l fiberglass tanks) were set up without tilapia at 30, 39, 48, 57, and 65 g · l-1. Additional microcosms were set up with tilapia at 39 and 57 g · l-1. In the absence of fish Gammarus mucronatus dominated the benthos at the lower salinities, and Trichocorixa reticulata and the larvae of Ephydra riparia were most abundant above 48 g · l-1. The most abundant meiofaunal species included the harpacticoid copepod. Cletocamptus deitersi, three nematodes, the rotifer Brachionus plicatilis, ciliates, including Condylosoma sp. and Fabrea salina, two foraminiferans including Quinqueloculina sp., and a large flagellate. Most meiofaunal species responding to salinity were most abundant at 65 g · l-1, especialy after 6 months when Gammarus dominated the lower salinities. The tilapia reduced the abundance of macrofaunal species, especially at 39 g · l-1, and generally increased the abundance of meiofaunal species and ciliates. The microcosm benthic macro- and meiofaunal communities were most likely structured by Gammarus, salinity and tilapia. Gammarus reduced the other species by predation and changing the detritus from an algal base to a fecal pellet base. Gammarus was itself reduced by tilapia and by reduced reproductive success above 39 g · l-1. More species were therefore able to compete at higher salinities and in the presence of tilapia. Tilapia also affected the benthos by depositing loosely packaged fecal material which may support more meiofaunal species than either the robust Gammarus fecal pellets that were abundant at 39 g · l-1 or the algae-fecal pellet mix at 57 g · l-1.

This is a preview of subscription content, access via your institution.

References

  • Anderson, R. V. & D. C. Coleman, 1981. Population development and interactions between two species of bacteriophagic nematodes. Nematologica 27: 6–19.

    Article  Google Scholar 

  • Arnal, R. E., 1961. Limnology, sedimentation, and microorganisms of the Salton Sea, California. Bull. geol. Soc. Am. 72: 427–478.

    CAS  Google Scholar 

  • Balling, S. S. & V. H. Resh, 1984. Life history variability in the water boatman, Trichocorixa reticulata (Hemiptera: Corixidae), in San Francisco Bay salt marsh ponds. Ann. entomol. Soc. Am. 77: 14–19.

    Google Scholar 

  • Bärlocher, R. & S. L. Howatt, 1986. Digestion of carbohydrates and protein by Gammarus mucronatus Say (Amphipoda). J. exp. mar. Biol. Ecol. 104: 229–237.

    Article  Google Scholar 

  • Bell, S. S. & B. C. Coull, 1978. Field evidence that shrimp predation regulates meiofauna. Oecologia 35: 141–148.

    Article  Google Scholar 

  • Bird, A. F. & J. Bird, 1991. The structure of nematodes. 2nd edn. Academic Press, San Diego: 316 pp.

    Google Scholar 

  • Black, M., 1933. The algal sediments of Andros Island, Bahamas. Phil. Trans. r. Soc., Lond., ser. B22: 165–192.

    Google Scholar 

  • Carpelan, L. H., 1957. Hydrobiology of the Alviso salt ponds. Ecology 38: 375–390.

    Article  Google Scholar 

  • Carpelan, L. H., 1961a. Physical and chemical characteristics. In B. D. Walker (ed.), The Ecology of the Salton Sea, in Relation to the Sportfishery. Calif. Fish Game Fish Bull. 113: 17–32.

  • Carpelan, L. H., 1961b. Zooplankton. In B. D. Walker (ed.), The Ecology of the Salton Sea, in Relation to the Sportfishery. Calif. Fish Game Fish Bull. 113: 49–62.

  • Carpelan, L. H. & R. H. Linsley, 1961. The pile worm. In B. D. Walker (ed.), The Ecology of the Salton Sea, in Relation to the Sportfishery. Calif. Fish Game Fish Bull. 113: 63–76.

  • Colburn, E. A., 1988. Factors influencing species diversity in saline waters of Death Valley, USA. Hydrobiologia 158: 215–226.

    Article  CAS  Google Scholar 

  • Cox, M. C., 1969. The biology of the euryhaline water boatman Trichocorixa reticulata (Guérin-Menéville) (Hemiptera-Corixidae). MS Thesis, California State University, San Diego, California: 84 pp.

    Google Scholar 

  • Cummings, E. & E. Ruber, 1987. Copepod colonization of natural and artificial substrates in a salt marsh pool. Estuar. coast. Shelf. Sci. 25: 637–645.

    Google Scholar 

  • Cullen, D. J., 1973. Bioturbation of superficial marine sediments by interstitial meiobenthos. Nature 242: 323–324.

    Article  Google Scholar 

  • Davis, C. C., 1966. Notes on the ecology and reproduction of Trichocorixa reticulata in a Jamaican salt-water pool. Ecology 47: 850–852.

    Article  Google Scholar 

  • Decho, A. W., 1986. Water-cover influence on diatom ingestion rates by meiobenthic copepods. Mar. Ecol. Prog. Ser. 33: 139–146.

    Google Scholar 

  • Dexter, D. M., 1993. Salinity tolerance of the copepod apocyclops dengizicus (Lepeschkin, 1900), a key food chain organism in the Salton Sea, California. Hydrobiologia 267: 202–209.

    Article  Google Scholar 

  • Dexter, D. M., 1995. Salinity tolerance of Cletocamptus deitersi (Richard, 1897) and its presence in the Salton Sea. Bull. Southern California Acad. Sci. In press.

  • Diehl, S., 1992. Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology 73: 1646–1661.

    Article  Google Scholar 

  • Duncan, A., F. Schiemer & R. Z. Klekowski, 1974. A preliminary study of feeding rates on bacterial food by adult females of a benthic nematode, Plectus palustris DeMan, 1880. Polskie Archiwum Hydrobiologii 21: 249–258.

    Google Scholar 

  • Escaravage, V. & J. Castel, 1990. The impact of the lagoonal shrimp Palaemonetes varians (Leach) on meiofauna in a temperate coastal impoundment. Acta oecol. 11: 409–418.

    Google Scholar 

  • Fenchel, T., 1967. The ecology of marine microbenthos. I. The quantitative importance of ciliates as compared with metazoans in various types of sediments. Ophelia 4: 121–137.

    Google Scholar 

  • Fenchel, T., 1968. The ecology ofmarine microbenthos. II. The food of marine benthic ciliates. Ophelia 5: 73–121.

    Google Scholar 

  • Fenchel, T., 1969. The ecology of the marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfaunal communities with special reference to the ciliated protozoans. Ophelia 6: 1–182.

    Google Scholar 

  • Fong, P. P., 1991. The effects of salinity, temperature, and photoperiod on epitokal metamorphosis in Neanthes succinea (Frey et Leuckart) from San Francisco Bay. J. exp. mar. Biol. Ecol. 149: 177–190.

    Article  Google Scholar 

  • Fries, G. & F.W. Tesch, 1965. Der Einfluss desMassenvorkommens von Gammarus tigrinus Sexton auf Fische und Niedere Tirewelt in der Weser. Archive fur Fischereiwissenschaft 16: 133–150.

    Google Scholar 

  • Galat, D. L., M. Coleman & R. Robinson, 1988. Experimental effects of elevated salinity on three benthic invertebrates in Pyramid Lake, Nevada. Hydrobiologia 158: 133–144.

    Article  CAS  Google Scholar 

  • Gerlach, S. A., 1971. On the importance of marine meiofauna for benthos communities. Oecologia 6: 176–190.

    Article  Google Scholar 

  • Gerlach, S. A., 1978. Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity. Oecologia 33: 55–69.

    Article  Google Scholar 

  • Ginsberg, R. N. & H. A. Lowenstam, 1958. The influence of marine bottom communities on the depositional environment of sediments. J. Geol. 66: 310–318.

    Google Scholar 

  • González, M. R., C. M. Hart, J. Verfaillie & S. H. Hurlbert, 1998a. Salinity and fish effects on Salton Sea microecosystems: water chemistry and nutrient cycling. Hydrobiologia 381: 105–128.

    Article  Google Scholar 

  • González, M. R., C. M. Hart, E. P. Simpson, R. Lara & S. H. Hurlbert, 1998b. Salinity and fish effects on Salton Sea microecosystems: phytoplankton and periphyton. In preparation.

  • Griffith, D. A., 1989. Meiofaunal recolonization of defaunated sediments in mission bay, with emphasis on the Copepoda (Harpacticoida). MS Thesis, San Diego State University, San Diego, California: 59 pp.

    Google Scholar 

  • Hammer, U. T., 1986. Saline Lake Ecosystems of the World. Dr W. Junk Publishers, Dordrecht: 616 pp.

    Google Scholar 

  • Hammer, U. T. & S. H. Hurlbert, 1992. Is the absence of Artemia determined by the presence of predators or by lower salinity in some saline waters? In R. D. Roberts & M. L. Bothwell (eds), Aquatic Ecosystems in Semi-arid Regions: Implications for Resource Management. N.H.R.I. Symposium Series 7, Environment Canada, Saskatoon: 91–102.

  • Hart, C. M., 1994. Salinity and fish effects on invertebrates of the Salton Sea: a microcosm experiment. MS Thesis, San Diego State University, San Diego, California: 102 pp.

    Google Scholar 

  • Hart, C. M., M. R. González, E. P. Simpson & S. H. Hurlbert, 1998. Salinity and fish effects on Salton Sea microecosystems: zooplankton and nekton. Hydrobiologia 381: 129–152.

    Article  Google Scholar 

  • Healey, M., 1984. Fish predation on aquatic insects. In V. H. Resh & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger, New York: 255–288.

    Google Scholar 

  • Hely, A. G., G. H. Hughes & B. Irelan, 1966. Hydrologic regimen of Salton Sea, California. U. S. Geol. Surv. prof. Pap. 486–C, 32 pp.

  • Herbst, D. B., 1988. Comparative population ecology of Ephydra hians (Diptera: Ephydridae) at Mono Lake (California) and Abert Lake (Oregon). Hydrobiologia 158: 145–166.

    Article  CAS  Google Scholar 

  • Hurlbert, S. H., W. Loayza & T. Moreno, 1986. Fish-flamingoplankton interactions in the Peruvian Andes. Limnol. Oceanogr. 31: 457–468.

    Google Scholar 

  • Kneib, R. T., 1985. Predation and disturbance by grass shrimp, Palaemonetes pugio Holthuis, in soft-substratum benthic invertebrate Assemblages. J. exp. mar. Biol. Ecol. 93: 91–102.

    Article  Google Scholar 

  • Knowles, J. N. & W. D. Williams, 1973. Salinity range and osmoregulatory ability of corixids (Hemiptera: Heteroptera) in south-east Australian inland waters. Austr. J. mar. Freshw. Res. 24: 297–302.

    Article  Google Scholar 

  • Kuhl, D. L. & L. C. Oglesby, 1979. Reproduction and survival of the pileworm Nereis succinea in higher Salton Sea salinities. Biol. Bull. 157: 153–165.

    Google Scholar 

  • Linsley, R. H. & L. H. Carpelan, 1961. Invertebrate fauna. In B. D. Walker (ed.), The Ecology of the Salton Sea, in Relation to the Sportfishery. Calif. Fish Game Fish Bull. 113: 43–48.

  • McIntyre, A. D., 1964. Meiobenthos of sub-littoral muds. J. mar. biol. Ass. U.K. 44: 665–674.

    Google Scholar 

  • McIntyre, A. D., 1969. Ecology of marine meiobenthos. Biol. Rev. 44: 245–290.

    Google Scholar 

  • McIntyre, A. D. & D. J. Murison, 1973. The meiofauna of a flatfish nursery ground. J. mar. biol. Ass. U.K. 53: 93–118.

    Article  Google Scholar 

  • Nicholas, W. L., 1984. The biology of free-living nematodes. 2nd edn. Clarendon Press, Oxford: 251 pp.

    Google Scholar 

  • Nowell, A. R. M., P. A. Jumars & J. E. Eckman, 1981. Effects of biological activity on the entrainment of marine sediments. Mar. Geol. 42: 133–153.

    Article  Google Scholar 

  • Oliver, J. S. & P. N. Slattery, 1985. Effects of crustanean predators on species composition and population structure of softbodied infauna from McMurdo Sound, Antarctica. Ophelia 24: 155–175.

    Google Scholar 

  • Palmer, M. A., 1988. Epibenthic predators and marine meiofauna: separating predation, disturbance, and hydrodynamic effects. Ecology 69: 1251–1259.

    Article  Google Scholar 

  • Pullin, R. S. V. & R. H. Lowe-McConnell, 1982. The biology and culture of tilapias. International Center for Living Aquatic Resources Management Conference Proceedings 7. International Center for Living Aquatic Resources Management, Manila, Philippines: 432 pp.

    Google Scholar 

  • Rawson, D. S. & J. E. Moore, 1944. The saline lakes of Saskatchewan. Can. J. Res. D, zool. Sci. 22: 141–201.

    Google Scholar 

  • Reise, K., 1981. High abundance of small zoobenthos around biogenic structures in tital sediments of the Wadden Sea. Helgol. Meeresunters. 34: 413–425.

    Article  Google Scholar 

  • Rhoads, D. C. & D. K. Young, 1970. The influence of depositfeeding organisms on sediment stability and community trophic structure. J. mar. Res. 28: 150–178.

    Google Scholar 

  • Ross, W. H., 1914. Chemical composition of the water of Salton Sea and its annual variation in concentration, 1906–1911. In D. T. MacDougal (ed.), The Salton Sea. A study of the geography, the geology, the floristics, and the ecology of a desert basin. Carnegie Institute Publication 193L: 35–46.

  • Savage, A. A., 1981. The Gammaridae and Corixidae of an inland saline lake from 1975 to 1978. Hydrobiologia 76: 33–44.

    Article  Google Scholar 

  • Savage, A. A., 1982. The survival and growth of Gammarus tigrinus Sexton (Crustacea: Amphipoda) in relation of salinity and Temperature. Hydrobiologia 94: 201–212.

    Article  Google Scholar 

  • Severin, K. P., S. J. Culver & C. Blanpied, 1982. Burrows and trials produced by Quinqueloculina impressa Reuss, a benthic foraminifer, in fine-grained sediment. Sedimentology 29: 897–901.

    Article  Google Scholar 

  • Simpson, E. P., 1994. Salinity and fish effects on the Salton Sea benthos. MS Thesis. San Diego State University, San Diego, California: 116 pp.

    Google Scholar 

  • Simpson, E. P. & S. H. Hurlbert, 1998. Salinity effects on the growth, mortality and shell strength of Balanus amphitrite from the Salton Sea, California. Hydrobiologia 381: 191–201.

    Article  Google Scholar 

  • Smith, C. R., 1986. Nekton falls, low-intensity disturbance and community structure of infaunal benthos in the deep sea. J. mar. Res. 44: 567–600.

    Article  Google Scholar 

  • Smith, L. D. & B. C. Coull, 1987. Juvenile spot (Pisces) and grass shrimp predation on meiobenthos in muddy and sandy substrate. J. exp. mar. Biol. Ecol. 105: 123–136.

    Article  Google Scholar 

  • Stehr, F. W., 1987. Immature insects, volume 2. Kendall/Hunt, Dubuque, 760 pp.

    Google Scholar 

  • Stripp, K., 1969. Das Verhältnis von Makrofauna und Meiofauna in den Sedimenten der Helgoländer Bucht. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven 12: 143–148.

    Google Scholar 

  • Swedmark, B., 1964. The interstitial fauna of marine sand. Biol. Rev. 39: 1–42.

    Article  Google Scholar 

  • Sykes, G., 1914. Geographical features of the Cahuilla Basin. In D. T. MacDougal (ed.), The Salton Sea. A study of the geography, the geology, the floristics, and the ecology of a desert basin. Carnegie Institute Publication 193L: 13–20.

  • Tenore, K. R., L. Cammen, S. E. G. Findlay & N. Philips, 1982. Perspective of research on detritus: Do factors controlling the availability of detritus on macroconsumers depend on its source? J. mar. Res. 40: 473–490.

    CAS  Google Scholar 

  • Tietjen, J. H. & J. J. Lee, 1972. Life cycles of marine nematodes. Influence of temperature and salinity on the development of Monhystera denticulata Timm. Oecologia 10: 167–176.

    Article  Google Scholar 

  • Tietjen, J. H. & J. J. Lee, 1977. Feeding behavior of marine nematodes. In B. C. Coull (ed.), Ecology of Marine Benthos. Univerisity of South Carolina Press, Columbia: 21–35.

    Google Scholar 

  • Tietjen, J. H., J. J. Lee, J. Rullman, A. Greengart & J. Trompeter, 1970. Gnotobiotic culture and physiological ecology of the marine nematode, Rhabditis marina Bastian. Limnol. Oceanogr. 15: 535–543.

    Article  Google Scholar 

  • Timms, B. V., 1983. A study of benthic communities in some shallow saline lakes of western Victoria, Australia. Hydrobiologia 105: 165–178.

    Article  Google Scholar 

  • Trewavas, E., 1983. Tilapiine fishes of the genera Sarotherodon, Oreochromis and Danakilia. British Museum (Natural History), London: 583 pp.

    Google Scholar 

  • Warwick R. M., 1981. The influence of temperature and salinity on energy partitioning in the marine nematode Diplolaimelloides bruciei. Oecologia 51: 318–325.

    Article  Google Scholar 

  • Warwick, R. M. & R. Price, 1979. Ecological and metabolic studies on free-living nematodes from an estuarine mud-flat. Estuar. coast. mar. Sci. 9: 257–271.

    Article  Google Scholar 

  • Warwick, R. M., I. R. Joint & P. J. Radford, 1979. Secondary production of the benthos in an estuarine environment. Proceedings of the First European Ecological Symposium 19: 429–450.

    Google Scholar 

  • Walker, B. W., 1961. The ecology of the Salton Sea, California, in relation to the sportfishery. Calif. Fish Game Fish Bull. 113: 1–204.

    Google Scholar 

  • Weiser, W., 1959. Free-living nematodes and other small invertebrates of Puget Sound beaches. University of Washington Publications in Biology 19: 1–179.

    Google Scholar 

  • Whitney, R. R., 1966. Increasing the utility of supersaline waters by the introduction of species. 17th Annual American Institute of Biological Sciences Meetings in Biological Sciences: 270–279.

  • Wolfram Research, Inc., 1993. Mathematica, Version 2.2. Wolfram Research, Inc., Champaign, III.

  • Wurtsbaugh, W. A., 1992. Food-web modification by an invertebrate predator in the Great Salt Lake (USA). Oecologia 89: 168–175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Simpson, E.P., González, M.R., Hart, C.M. et al. Salinity and fish effects on Salton Sea microecosystems: benthos. Hydrobiologia 381, 153–177 (1998). https://doi.org/10.1023/A:1003231708756

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003231708756

  • saline lakes
  • microcosms
  • Gammarus mucronatus
  • Trichocorixa reticulata
  • meiofauna
  • macrofauna
  • ciliates
  • nematodes
  • Fabrea
  • Condylostoma
  • Cletocamptus
  • Artemia
  • Ephydra
  • Oreochromis mossambicus