Skip to main content

Acyclic isoprenoids – molecular indicators of archaeal activity in contemporary and ancient Chinese saline/hypersaline environments

Abstract

Acyclic isoprenoid hydrocarbons are found to be the predominant components in the organic matter extracted from sedimentary cores and oils of various hypersaline settings, including Tertiary Janghan salt lake basin, Cretaceous Taian salt lake basin, and Triassic, Permian and Cambrian Yangtze evaporitic marine platform. Inland saline lake basins are characterized by tremendous predominance of phytane (iC20) ranging up to 15% of the total extract. While the evaporitic marine sediments are unique for their complete series of super-long-chain acyclic isoprenoids, up to C40. These isoprenoids possess head-to-head, tail-to-tail or regular linkages and generally are indicators of the significant contribution from various archaea (archaebacteria), i.e. halophiles, methanogens and acidothermophiles. According to the great discrepancy of distribution and composition of isoprenoids, these modern and Cenozoic inland salt lake sediments are likely dominated by halophilic archaea, while the studied Mesozoic and Paleozoic evaporitic marine sediments are predominantly distinguished by methanogens and acidothermophiles. Concentration of chlorine salt is more directly proportional to the abundance of phytane than sulfate. Reduced species of sulfur, sulfide, S0 and organic sulfur compounds (OSC), however, may have played a key role in the preservation and formation of the highly abundant phytane observed in the inland salt lake basins.

This is a preview of subscription content, access via your institution.

References

  • Albaiges, J., 1980. Identification and geochemical significance of long chain acyclic isoprenoid hydrocarbons in crude oils. In A. G. Douglas & J. R. Maxwell (eds), Advances in Org. Geochem., 1979. Pergamon, Oxford: 265–274.

    Google Scholar 

  • Albaiges, J. & P. Albrecht, 1979. Fingerprinting marine pollutant hydrocarbons by computerized GC-MS. Int. J. Envir. Anal. Chem. 6: 171–190.

    CAS  Google Scholar 

  • Albaiges, J., J. Borbon & W. Walker II, 1985. Petroleum isoprenoid hydrocarbons derived from catagenic degradation of Archaebacterial lipids. Org. Geochem. 8: 293–297.

    Article  CAS  Google Scholar 

  • Barbe, A., J. O. Grimalt, J. J. Pueyo & J. Albaiges, 1990. Characterization of model evaporitic environments through the study of lipid components. In E. W. Baker & A. G. Douglas (eds), Advances in Organic Geochemistry 1989.Pergamon Press, Oxford. Org. Geochem. 16: 815–828.

    Google Scholar 

  • Brassell, S. C. & G. Eglinton, 1987. Paleoenvironmental assessment for marine organic-rich sediments using molecular organic geochemistry. In J. Brooks & A. J. Fleet (eds), Marine Petroleum Source Rocks. Blackwell, Oxford: 79–88.

    Google Scholar 

  • Brassel, S. C. & G. Eglinton & J. R. Maxwell, 1983. The geochemistry of terpenoids and steroids. Biochem. Soc. Trans. 11: 575–586.

    Google Scholar 

  • Bayona, J. M., J. Grimalt, J. Albaiges, W. Walker II, B. de Lappe & R. W. Risebrough, 1983. Recent contributions of high resolution as chromatography to the analysis of environmental hydrocarbons. J. High Res. Chrom. Chrom. Com. 6: 605–611.

    Article  CAS  Google Scholar 

  • Brassell, S. C., C. A. Lewis, J. W. de Leeuw, F. de Lange & J. S. Sinninghe Damste, 1986. Isoprenoid thiophenes: novel products of sediment diagenesis? Nature 320: 160–162.

    Article  CAS  Google Scholar 

  • Brassel, S. C., G. Y. Sheng, J. M. Fu & G. Eglinton, 1988. Biological markers in lacustrine Chinese oil shales. In A. J. Fleet, K. Kelets & M. R. Talbot (eds), Geological Society Special Publication 40, Blackwell, Oxford: 299–308.

    Google Scholar 

  • Brassel, S. C. A. M. K. Wardroper, I. D. Thomson, J. R. Maxwell & G. Eglinton, 1981. Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments. Nature 290: 693–696.

    Article  Google Scholar 

  • Chappe, B. & Albrecht, P. 1982. Polar lipids of Archaebacteria in sediments and petroleums. Science 217: 65–66.

    CAS  PubMed  Google Scholar 

  • Chappe, B., W. Michaelis, P. Albrecht, 1979a. Molecular fossils of archaebacteria as selective degradation products of kerogen. In A. G. Douglas & J. Maxwell (eds), Advances in Organic Geochemistry 1979. Pergamon Press, Oxford: 265–274.

    Google Scholar 

  • Connan, J., J. Bouroullec, O. Dessort & P. Albrecht, 1986. The microbial input in carbonate-anhydrite facies of a sabkha paleoenvironment from Guatemale: a molecular approach. In D. Leythaeuser & J. Rullkotter (eds), Advances in Organic Geochemistry 1985. Pergamon Press, Oxford. Org. Geochem. 10: 29–50.

    Google Scholar 

  • Cornforth, J. W., 1959. Biosynthesis of fatty acids and cholesterol considered as a chemical process. J. Lipid Res. 1: 3–28.

    CAS  Google Scholar 

  • Chappe, B., W. Michaelis, P. Albrecht, & G. Ourisson, 1979b. Fossil evidence for a novel series of archaebacterial lipids. Naturwissenschaften 66: 522–523.

    Article  CAS  Google Scholar 

  • de Leeuw, W. Jan & J. S. Sinnighe Damste, 1990. Organic sulfur compounds and other biomarkers as indicators of palaeosalinity. In W. L. Orr & C. M. White (eds), Geochemistry of Sulfur in Fossil Fuels. ACS Symposium series 429. Washington DC: 417–443.

  • De Rosa, M., A. Gambacorta, B. Nicolaus, H. N. M. Ross, W. D. Grant & J. D. Bu'lock, 1982. An asymmetric archaebacterial diether from alkaliphilic halophiles. J. Gen. Microbiol. 128: 343–348.

    CAS  Google Scholar 

  • De Rosa, M., A. Gambacorta, A. Gliozzi, 1986. Structure, Biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol. Rev. 50: 70–80.

    PubMed  CAS  Google Scholar 

  • Didyk, B. M., B. R. T. Simoneit, S. C. Brassell, & G. Eglinton, 1978. Organic geochemical indicator of palaeoenvironmental conditions of sedimentation. Nature 272: 216–222.

    Article  CAS  Google Scholar 

  • Dunlop, R. W. & P. R. Jeffries, 1985. Hydrocarbons of the hypersaline basins of Shark Bay, Western Australia. Org. Geochem. 8: 313–320.

    Article  CAS  Google Scholar 

  • Fu, J. M., G. Y. Sheng, P. A. Peng, S. C. Brassell, G. Eglinton & J. G. Jiang, 1986. Pecularities of salt lake sediments as potential source rocks in China. In D. Leythaeuser & J. Rullkoter (eds), Advance in Organic Geochemistry 1985. Pergmon, Oxford. Org. Geochem. 10: 119–126.

    Google Scholar 

  • Fu, J. M., G. Y. Sheng, J. Y. Xy, R. F. Jia, S. F. Fan, P. G. Peng, G. Eglinton & A. P. Gowar, 1992. Biomarker compounds as indicators of paleoenvironments. Chin. J. Geochem. 11: 1–12.

    CAS  Google Scholar 

  • Gillan, F. T. & R. B. Johns, 1980. Input and early diagenesis of chlorophylls in a temperate intertidal sediment. Mar. Chem. 9: 243–253.

    Article  CAS  Google Scholar 

  • Jain, M. K., J. G. Zeikus & L. Bhatnagar, 1991. Methanogens. In P. N. Levett (ed.), Anaerobic Microbiology–a Practical Approach. Oxford University Press: 223–243.

  • Jiang, J. G., 1985. About the source of oil in the Qianjiang Formation. Acta Petroleum Sinica 6: 23–30 (in Chinese).

    CAS  Google Scholar 

  • Han, J. C-Y, 1970. Chemical studies of terrestrial and extraterrestrial life, Ph.D. Thesis, University of California, Berkeley, California, U.S.A.

    Google Scholar 

  • Han, J., E. D. McCarthy, W. Van Hoeven, M. Calvin & WE. H. Bradley, 1968. Organic geochemistry studies. II. A preliminary report on the distribution of aliphatic hydrocarbons in algae, in bacteria, and in recent lake sediment. Proc. Natil. Acad. Sci. U.S.A. 59: 29–33.

    Article  CAS  Google Scholar 

  • Han, J. & M. Calvin, 1969. Hydrocarbon distribution of algae and bacteria and microbial activity in sediment. Proc. Natil. Acad. Sci. U.S.A. 70: 705–707.

    Google Scholar 

  • Hayes, J. M., R. Takigiku, R. Ocampo, H. J. Callot & P. Albrecht, 1987. Isotopic compositions and probal organic molecules in Eocene Messel shale. Nature 29: 48–53.

    Article  Google Scholar 

  • Holzer, G., J. Ore & T. G. Tornabene, 1979. Gas chromatographicmass spectrometric analysis of neutral lipids from metanogenic and thermoacidophic bacteria. J. chromatogr. 186: 795–809.

    Article  CAS  Google Scholar 

  • Holzer, G., 1983. Lipids from methane-producing and sulfurreducing bacteria and their geochemical significance. In P. McCarthy (ed.), Research in Chemistry and Geochemistry at Colorado School of Mines. Colorado School of Mines: 9–13.

  • Huang, J. & J. Zhang, 1990. Sedimentary characteristics of Triassic Evaporite in South China. In: Professional Papers of Stratigraphy and Paleontology No. 23, (ed.), Editorial Committee of Professional Papers of Stratigraphy and Paleontology, Chinese Academy of Geological Sciences. Geological Publishing House, Beijing.

    Google Scholar 

  • Kates, M. L. S. Yengoyan & P. S. Sastry, 1965. A diether analog of phosphotidyl glycerophosphate in Halobacterium cutirubrum. Biochim. Biophys. Acta 98: 252–268.

    PubMed  CAS  Google Scholar 

  • Kates, M., P. S. Sastry & L. S. Yengoyan, 1963. Isolation and characterization of a diether analog of phosphatidyl glycerophosphate from Halobacterium cutirubrum. Biochim. Biophys. Acta 70: 705–707.

    PubMed  Article  CAS  Google Scholar 

  • Kates, M., B. Palameta, C. N. Joo, D. J. Kushner & N. E. Gibbons, 1966. Aliphatic diether analogs of glyceride derived lipids. IV. The occurance of di-O-phytanylglycerol ether containing lipids in extremely halophilic bacteria. Biochemistry 5: 4092–4099.

    Article  CAS  Google Scholar 

  • Kates, M., C. N. Joo, B. Palameta & T. Shier, 1967. Absolute sterochemical configuration of phytanyl (dihydrophytyl) groups in lipids of Halobacterium cutirubrum. Biochemistry 6: 3329–3338.

    PubMed  Article  CAS  Google Scholar 

  • Kenig, F., A. Y. Huc, B. H. Purser & J. L. Oudin, 1990. Sedimentation, distribution and diagenesis of organic matter in a recent carbonate environment, Abu Dhabi, U.A.E. In E. W. Baker & A. G. Douglas (eds), Advances in Organic Geochemistry 1989. Pergamon Press, Oxford. Org. Geochem. 16: 735–647.

    Google Scholar 

  • Langworthy, T. A., 1977. Long-chain diglycerol tetraethers from Thermoplasma acidophilumi Biochem. Biophys. Acta 487: 37–50.

    PubMed  CAS  Google Scholar 

  • Langworthy, T. A., 1985. Lipids of Archaebacteria. In C. R. Woese & R. S. Wolfe (eds), Archaebacteria. Academic Press: 459–497.

  • Li, R., H. Wu, D. Lin, Z. Wang, R. Chen, X. Tian & R. Zhang, 1992. Biomarker features of the Chinese Mso, Cenozoic saline lake deposits. Adv. Geosci. Inst. of Geology, CAS: 275–295.

  • Macfarlane, G. T. & G. R. Gibson, 1991. Sulphate-reducing bacteria. In P. N. Levett (ed.), Anaerobic Microbiology–a Practical Approach. Oirl Press at Oxford University Press: 201–222.

  • Meissner, F. F., J. Woodward & J. L. Clayton, 1984. Stratigraphic relationship and distribution of source rocks in the Greater Rocky Mountain Region. In J. Woodward, F. F. Meissner & J. L. Clayton (eds), Hydrocarbon Suurce Rocks of Greater Rocky Mountain Region. Rocky Mountain Assoc. Geol., Denver: 1–34.

    Google Scholar 

  • Oremland, R. S., 1988a. Biogeochemistry ofmethanogenic bacteria. In: A. J. B. Zehnder (ed.), Biology of Anaerobic Microorganisms. John Wiley & Sons: 641–705.

  • Oremland, R. S., J. E. Cloern, Z. Sofer, R. L. Smith, C. W. Culbertson, J. Zehr, L. Miller, B. Cole, R. Harvey, N. Iversen, M. Klug, D. J. DesMarais & G. Rau, 1988b. Microbial and biogeochemical processed in Big Soda Lake, Nevada. In A. J. Fleet, K. Kelets & M. R. Talbot (eds), Geological Society Special Publication no. 40. Blackwell, Oxford: 59–75.

    Google Scholar 

  • Peters, Kenneth E. & J. M. Moldowan, 1993. The Biomarker Guide interpreting molecular fossils in petroleum and ancient Sediments. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Petrov, Al. A., N. S. Vorobyova & Z. K. Zemskova. Isoprenoid alkanes with irregular ‘head-to-head’ linkages. Org. Geochem. 16: 1001–1005.

  • Philp, R. P. & Z. A. Fan, 1987. Geochemical investigation of oils and source rocks from Qianjiang Depression of Jianghan Basin, a terrigenous saline basin, China. Org. Geochem. 11: 549–562.

    Article  CAS  Google Scholar 

  • Robson, J. N. & S. J. Rowland, 1988. Biodegradation of highly branched isoprenoid hydrocarbons: a possible explanation of sedimentary abundance. In L. Mattavelli & L. Novelli (eds), Advances in Organic Geochemistry 1987. Pergamon Press, Oxford. Org. Geochem. 13: 691–695.

    Google Scholar 

  • Rowland, S. J., 1990. Production of acyclic isoprenoid hydrocarbons by laboratory maturation of methanogenic bacteria. Org. Geochem. 5: 9–16.

    Article  Google Scholar 

  • Rowland, S. J., D. A. Yon, C. A. Lews & J. R. Maxwell, 1985. Occurance of a 2, 6, 10–trimethyl-7–(3–methylbutyl)-dodecane and related hydrocarbons in green alga. Enteromorpha prolifera and sediments. Org. Geochem. 8: 207–213.

    Article  CAS  Google Scholar 

  • Sehgal, S. N., M. Kates & N. E. Ginnons, 1962. Lipids of Halobacterium cutirubrum. Can. J. Biochem. physol. 40: 69–81.

    CAS  Article  Google Scholar 

  • Sheng, G. Y. & J. M. Fu, 1987. Sulphur-containing compounds in sulphur-rich crude oils from hypersaline lake sediments and their geochemical implications. Geochemistry (China) 6: 114–126.

    Google Scholar 

  • Sinninghe Dameste, J. S., T. I. Eglinton, W. I. C. Rijpstra & J.W. de Leeuw, 1989. Organic sulfur in macromolecular sedimentar organic matter. I-Structure and origin of sulfur containing moieties in kerogen, asphaltenes and coal as revealed by flash pyrosis. Geochim. Cosmochim. Acta 53: 873–889.

    Article  Google Scholar 

  • Smith, J. D., G. Eglinton & R. J. Morris, 1983. The lipid chemistry of an interfacial sediment from the Peru Continental Shelf: Fatty acids, alcohol, aliphatic ketones and hydrocarbons. Geochim. Cosmochim. Acta 47: 2225–2232.

    Article  CAS  Google Scholar 

  • ten Haven, H. L., J. W. de Leeuw, J. Rullkotter & J. S. Sinninghe Damste, 1987. Restricted utility of the pristine phytane ratio as a palaeoenvironmental indicator. Nature 330: 641–643.

    Article  CAS  Google Scholar 

  • ten Haven, H. L., J. W. de Leeuw & P. A. Schenk, 1985. Organic geochemical studies of a Messinian evaporitic basin, northern Apennines (Italy) I: Hydrocarbon biomarkers for a hypersaline Environment. Geochem. Cosmochim. Acta 49: 2188–2191.

    Google Scholar 

  • ten Haven, H. L., J. W. de Leeuw, J. S. Sinninghe Damste, P. A. Schenk, S. E. Palmer & J. E. Zumberge, 1988. Application of biological markers in the recognition of paleohypersaline environments. In A. J. Fleet, K. Kelets & M. R. Talbot (eds), Lacustrine Petroleum Source Rocks. Geological Society Special Publication 40. Blackwell, Oxford: 123–130.

    Google Scholar 

  • Tornabene, P. G. & T. A. Langworthy, 1979. Diphytanyl and dibiphytanyl glycerol ether lipids of methanogenic Archaebacteria. Sciences 203: 51–53.

    CAS  Google Scholar 

  • Tornabene, T. G., T. A. Langworthy, G. Holzer & J. Oro, 1979. Squalenes, phytanes and other isoprenoids as major neutral lipids of metanogenic and thermoacidophilic ‘archaebacteria'. J. Mol. Evol. 13: 73–83.

    PubMed  Article  CAS  Google Scholar 

  • Volkman, J. K. & J. R. Maxwell, 1986. Acyclic isoprenoids as biological markers. In R. B. Johns (ed.), Biological Markers in The Sedimentary Record. Methods in Geochemistry and Geophysics, 24. Elsevier, Amsterdam: 1–32.

    Google Scholar 

  • Volkman, J. K., 1988. Biological marker compounds as indicators of the depositional environments of petroleum source rocks: 103– 122. In A. J. Fleet, K. Kelets & M. R. Talbot (eds), Lacustrine Petroleum Source Rocks. Geological Society Special Publication 40. Blackwell, Oxford: 103–122.

    Google Scholar 

  • Wang, R. L., S. C. Brassell, J. M. Fu & G. Y. Sheng, 1998. Molecular indicators of microbial contributions to recent and Tertiary hypersaline lacustrine sediments in China. Hydrobiologia 381: 77–103.

    Article  CAS  Google Scholar 

  • Wang Ruiliang, Fu Jiamo, 1997. Variability in biomarkers of different saline basins in China. Int. J. Salt Lake Research 6: 25–53.

    Article  Google Scholar 

  • Wang, R. L., J. M. Fu, G. Y. Sheng & S. C. Jiang, 1990b. Microbeinput carboxic biomarkers in saline/hypersaline sediments from saline basins of China. Science in China (series B), Science Press, Beijing, 33: 233–234.

    Google Scholar 

  • Wang, R. L.& H. Y. Shang, 1993. Composition Evolution of organic matter in the marine sediments of Central Yangtze Platform. In Shi Baohen (ed.), Yangtze Marine Geology and Petroleum: 175– 187. Petroleum Industry Press, Beijing (in Chinese).

    Google Scholar 

  • Wang, R. L. & H. Y. Shang, 1990a. Distribution and origin of gammacerane in several typical sedimentary environments. In Annual Research Reports of the Organic Geochemistry Laboratory 1988. Institute of Geochemistry, Chinese Academy of Sciences: 100–106. Science Press, Beijing. (in Chinese).

    Google Scholar 

  • Wang, R. L.,J. M. Fu & G. Y. Sheng, 1988a. Quantitative composition and distribution of biological markers in sediments of saline basins. In Annual Research Reports of the Organic Geochemistry Laboratory 1987 Institute of Geochemistry, Chinese Academy of Sciences: 109–119, Science Press, Beijing (in Chinese).

    Google Scholar 

  • Wang, T. G., P. Fan & F. M. Swain, 1988. Geochemical characteristics of crude oils and source beds in different continental facies of four oil-bearing basins, China. In A. J. Fleet, K. Kelets & M. R. Talbot (eds), Lacustrine Petroleum Source Rocks. Geological Society Special Publication 40: 309–325. Blackwell, Oxford.

    Google Scholar 

  • Wang, Z. Z., R. W. Li & D. X. Lin, 1988b. Isoprenoid hydrocarbons and the relation between them and sedimentary environment. Oil & Gas Geology 9: 140–145 (in Chinese).

    CAS  Google Scholar 

  • Williams, W. D. & R. T. Buckney, 1976. Chemical composition of some inland surface waters in South, Western and Northern Australia. Aust. J. Mar. Freshwat. Res. 27: 379–397.

    Article  CAS  Google Scholar 

  • Winfrey, M. R., 1984. Microbial production of methane. In R. M. Atlas (ed.), Petroleum Microbiology. Macmillan Publishing Company, New York: 153–220.

    Google Scholar 

  • Yon, D. A., J. R. Maxwell & G. Ryback, 1982. 2, 6, 10–trimethyl-7–(3–methylbutyl)-dodecane, a novel sedimentary biological merker. Tetrahedron lett. 23: 2143–2146.

    Article  CAS  Google Scholar 

  • Zhang, S. C., 1993. Biomarkers in southern marine facies contributions from bacteria and algae. In Shi Baohen (ed.), Yangtze Marine Geology and Petroleum. Petroleum Industry Press, Beijing: 155–174 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, R. Acyclic isoprenoids – molecular indicators of archaeal activity in contemporary and ancient Chinese saline/hypersaline environments. Hydrobiologia 381, 59–76 (1998). https://doi.org/10.1023/A:1003223506939

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003223506939

  • Archaea
  • archaebacteria
  • biomarker
  • isoprenoid
  • salinity
  • paleoenvironment
  • Cambrian
  • Permian
  • Triassic
  • Eocene