, Volume 360, Issue 1–3, pp 89–99 | Cite as

Phenotypic plasticity of Daphnia life history traits in response to predator kairomones: genetic variability and evolutionary potential

  • Anke Weber
  • Steven Declerck


Cladoceran populations can respond to changingpredation regimes by a phenotypical response as wellas by shifts in genotype frequencies. In this study,we investigated the phenotypic plasticity exhibited bylife history traits of D. galeata in response tothe presence of predator kairomones, as well as theextent to which natural selection may act on thesetraits and their phenotypic plasticity. In alife-table experiment, seven clones of a natural D. galeata population were subjected to kairomonesfrom fish (Perca), from an invertebrate predator(Chaoborus) or a mixture of both. Life historytraits were affected by the kairomones of bothpredators, but effects of Chaoborus wereneutralised by Perca in the kairomone mix. Noapparent trade-off was found between growth- andreproduction related traits: although daphnids fromthe Chaoborus treatment grew faster thandaphnids from the other treatments, no reduction inthe reproductive output was observed. Broad-senseheritabilities were found to be relatively high forsome life history traits (size at maturity, neonatesize, number of neonates) as well as for thephenotypic plasticity response of these traits. Thisreflects the evolutionary potential of life historytraits and their phenotypic response to predatorkairomones in the D. galeata population.

broad-sense heritability Chaoborus Perca kairomone mixture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beattie, D. M., H. L. Golterman & J. Vijverberg, 1979. An introduction to the limnology of the Friesian lakes. Hydrobiologia 58: 49–64.Google Scholar
  2. Black, A. R., 1993. Predator-induced phenotypic plasticity in Daphnia pulex: Life history andmorphological responses to Notonecta and Chaoborus. Limnol. Oceanogr. 38: 986–996.Google Scholar
  3. Brett, M. T., 1992. Chaoborusand fish-mediated influences on Daphnia longispinapopulation structure, dynamics and life history strategies. Oecologia 89: 69–77.Google Scholar
  4. Davidowicz, P., J. Pijanowska & K. Ciechomski, 1990. Vertical migration of Chaoboruslarvae is induced by the presence of fish. Limnol. Oceanogr. 35: 1631–1637.Google Scholar
  5. De Meester, L., 1994. Life histories and habitat selection in Daphnia: divergent life histories of D. magnaclones differing in phototactic behaviour. Oecologia 97: 333–341.Google Scholar
  6. De Meester, L., 1996. Evolutionary potential and local genetic differentiation in a phenotypically plastic trait of a cyclical parthenogen, Daphnia magna. Evolution 50: 1293–1298.Google Scholar
  7. Dodson, S. & C. Ramcharan, 1991. Size-specific swimming behaviour of Daphnia pulex. J. Plankton Res. 13: 1367–1379.Google Scholar
  8. Goser, B. & H. T. Ratte, 1994. Experimental evidence of negative interference in Daphnia magna. Oecologia 98: 354–361.Google Scholar
  9. Hadrys, H., M. Ballick & B. Schierwater, 1992. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol.: 55–63.Google Scholar
  10. Hall, D. J., S. T. Threlkeld, D. C. W. Burns & P. H. Crowley, 1976. The size-efficiency hypothesis and the size structure of zooplankton communities. Ann. Rev. Ecol. Syst. 7: 177–208.Google Scholar
  11. Hanazato, T. & M. Yasuno, 1989. Zooplankton community structure driven by vertebrate and invertebrate predators. Oecologia 81: 450–458.Google Scholar
  12. Havel, J. E., 1987. Predator-induced defenses: A review. In W. C. Kerfoot and A. Sih (eds), Predation: Direct and Indirect Impacts on Aquatic Communities. New England: 263–278.Google Scholar
  13. Havel, J. E., P. D. N. Hebert & L. D. Delorme, 1990. Genetics of sexual Ostracoda from a low arctic site. J. evol. Biol. 3: 65–84.Google Scholar
  14. Herzig, A., & B. Auer, 1990. The feeding behaviour of Leptodora kindtiiand its impact on the zooplankton community of Neusiedler See (Austria). Hydrobiologia 198: 107–117.Google Scholar
  15. Jacobs, J., 1987. Cyclomorphosis in Daphnia. Memoire dell’Instituto Italiano di Idrobiologica Dott. Marco de Marchi 45: 325–352.Google Scholar
  16. Krüger, D. A. & S. Dodson, 1981. Embryological induction and predation ecology in Daphnia pulex. Limnol. Oceanogr. 26: 219–223.Google Scholar
  17. Lammens, E. H. R. R., H.W. De Nie, J. Vijverberg & W. L. T. Van Densen, 1985. Resource partitioning and niche shifts of bream (Abramis brama) and eel (Anguilla anguilla) in Tjeukemeer. Can. J. Fish. aquat. Sci. 42: 1342–1351.Google Scholar
  18. Lampert, W., 1977. Studies on the carbon balance of Daphnia pulex De Geer as related to environmental conditions II. The dependence of carbon assimilation on animal size, temperature, food concentration and diet species. Arch. Hydrobiol. Suppl. 48: 310–335.Google Scholar
  19. Lampert, W., 1993. Phenotypic plasticity of the size at 1st reproduction in Daphnia–the importance of maternal size. Ecology 74: 1455–1466.Google Scholar
  20. Larsson, P. & S. Dodson, 1993. Invited review–chemical communication in planktonic animals. Arch. Hydrobiol. 129: 129–155.Google Scholar
  21. Lessels, C. M. & P. T. Boag, 1987. Unreparable repeatabilities: a common mistake. The Auk 104: 116–121.Google Scholar
  22. Lüning, J., 1992. Phenotypic plasticity of Daphnia pulexin the presence of invertebrate predators–morphological and life history responses. Oecologia 92: 383–390.Google Scholar
  23. Lüning, J., 1995. Life-history responses to Chaoborusof spined and unspined Daphnia pulex. J. Plankton Res. 17: 71–84.Google Scholar
  24. Lynch, M., 1980. The evolution of cladoceran life histories. Quart. Rev. Biol. 55: 23–42.Google Scholar
  25. Lynch, M., 1984. The limits to life history evolution in Daphnia. Evolution 38: 465–482.Google Scholar
  26. Lynch, M., 1994. Evolutionary genetics of Daphnia. In Real, L. (ed.), Ecological Genetics. Princeton University Press, Princeton, NY.: 109–128.Google Scholar
  27. Mooij, W. M. & M. Boersma, 1996. An object-orientated simulation framework for individual-based simulations (OSIRIS): Daphnia population dynamics as an example. Ecol. Modell. 93: 139–153.Google Scholar
  28. O’Brien, W. J., D. Kettle, H. Riessen, D. Schmidt & D. Wright, 1980. Dimorphic Daphnia longireis: Predation and competitive interactions between two morphs. In Kerfoot, W. C. (ed.), Evolution and Ecology of Zooplankton Communities. Univ. Press New England, Hanover: 497–505.Google Scholar
  29. Pastorok, R. A., 1981. Prey vulnerability and size selection by Chaoboruslarvae. Ecology 62: 1311–1324.Google Scholar
  30. Reede, T., 1995. Life history shifts in response to different levels of fish kairomones in Daphnia. J. Plankton Res. 17: 1661–1633.Google Scholar
  31. Reede, T., 1997. Effects of neonate size and food concentration on the life history responses of a clone of the hybrid Daphnia hyalina × galeata to fish kairomones. Feshwat. Biol. 37: 389–396.Google Scholar
  32. Rice, W. R., 1987. Analyzing tables of statistical tests. Evolution 43: 223–225.Google Scholar
  33. Ringelberg, J., 1991. A mechanism of predator-mediated induction of diel vertical migration in Daphnia hyalina. J. Plankton Res. 13: 83–89.Google Scholar
  34. Sokal, R. R. & F. J. Rohlf, 1981. Biometry. Freeman and Company, San Francisco, 859 pp.Google Scholar
  35. Sorensen, K. H. & R. W. Sterner, 1992. Extreme cyclomorphosis in Daphnia lumholtzi. Freshwat. Biol. 28: 257–262.Google Scholar
  36. Spaak, P., 1995. Cyclomomorphosis as a factor explaining success of a Daphniahybrid in Tjeukemeer. Hydrobiologia 307: 283–289.Google Scholar
  37. Spitze, K., 1991. Chaoboruspredation and life-history evolution in Daphnia pulex: temporal pattern of population diversity, fitness, and mean life history. Evolution 45: 82–92.Google Scholar
  38. Spitze, K., 1992. Predator-mediated plasticity of prey life history and morphology–Chaoborus americanuspredation on Daphnia pulex. Am. Nat. 139: 229–247.Google Scholar
  39. Spitze, K., 1995. Quantitative genetics of zooplankton life histories. Experientia 51: 454–465.Google Scholar
  40. Stearns, S., 1992. The Evolutionary Life Histories. Oxford University Press, New York, USA: 123–179.Google Scholar
  41. Stemberger, R. S. & J. J. Gilbert, 1987. Defenses of planktonic rotifers against predators. In Kerfoot, W. C. & A. Sih (eds), Predation: Direct and Indirect Impacts on Aquatic Communities. New England: 227–239.Google Scholar
  42. Stibor, H., 1991. Größenvariabilität von Daphniaspp. bei der ersten Reproduktion. Diplom–thesis, Univ. Kiel. Germany.Google Scholar
  43. Stibor, H., 1992. Predator-induced life-history shifts in a freshwater cladoceran. Oecologica 92: 162–165.Google Scholar
  44. Stibor, H. & J. Lüning, 1994. Predator-induced phenotypic variation in the pattern of growth and reproduction in Daphnia hyalina (Crustacea: Cladocera). Funct. Ecol. 8: 97–101.Google Scholar
  45. Taylor, B. E. & W. Gabriel, 1993. Optimal adult growth of Daphnia in a seasonal environment. Funct. Ecol.: 513–521.Google Scholar
  46. Thompson, J. D., 1991. Phenotypic plasticity as a component of evolutionary change. Trends Ecol. Evol. 6: 246–249.Google Scholar
  47. Tollrian, R., 1995. Predator-induced morphological defences: Costs, life history shifts, andmaternal effects in Daphnia pulex. Ecology 76: 1691–1705.Google Scholar
  48. Vijverberg, J., M. Boersma, W. L. T. van Densen, W. Hoogenboezem, E. H. R. R. Lammens & W. M. Mooij, 1990. Seasonal variation in the interactions between piscivorous fish, planktivorous fish and zooplankton in a shallow eutrophic lake. Hydrobiologia 207: 279–286.Google Scholar
  49. Weider, L. J. & J. Pijanowska, 1993. Plasticity of Daphnialife histories in response to chemical cues from predators. Oikos 67: 385–392.Google Scholar
  50. Williams, J. G. K., A. R. Kubelik, K. J. Livak, J. A. Rafalski & S. V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18: 6531–6535.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Anke Weber
    • 1
  • Steven Declerck
    • 2
  1. 1.Netherlands Institute for EcologyNieuwersluisThe Netherlands
  2. 2.Laboratory of Animal EcologyGentBelgium

Personalised recommendations