Skip to main content
Log in

Assessment of the importance of fish predation versus copepod predation on life history traits of Daphnia hyalina

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Daphnia hyalina is a cladoceran present throughthe whole year except for late summer in Maranhão,a meso-eutrophic reservoir in central Portugal. Apartfrom the influence of food, both vertebrate andinvertebrate predation pressures seem to have aneffect on D. hyalina population dynamics.Enclosure experiments were designed to assess therelative importance of both types of predation. Afterthe summer crash, D. hyalina reached highernumbers in the fishless enclosures than in the lakedespite of high predation pressure upon juveniles byAcanthocyclops robustus. Fish predation upon thelargest individuals, especially large egg bearingfemales, was responsible for the lower fertility ofthe open water population when compared with theenclosure population. In the enclosures an increase intail spine length was observed. The longer tail spineprobably offered protection from copepod predation,allowing at least some of the juveniles to coexistwith their potential predator and reach the adultstage, less susceptible to copepod predation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balseiro, E. G. & M. Vega, 1994. Vulnerability of Daphnia middendorffiana to Parabroteas sarsipredation: the role of the tail spine. J. Plankton Res. 16: 783–793.

    Google Scholar 

  • Boersma, M., 1995a. Competition in natural populations of Daphnia. Oecologia 103: 309–318.

    Google Scholar 

  • Boersma, M., 1995b. The allocation of resources to reproduction in Daphnia galeata: against the odds? Ecology 76: 1251–1261.

    Google Scholar 

  • Brandl, Z. & C. H. Fernando, 1975. Investigations on the feeding of carnivorous cyclopoids. Verh. int. Ver. Limnol. 19: 2959–2965.

    Google Scholar 

  • Brandl, Z. & C. H. Fernando, 1986. Feeding and food consumption by Mesocyclops edax. Proc. Second Int. Conf. on Copepoda, Natl. Mus. Nat. Sciences Canada, Syllogeus No. 58: 254–258.

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, F. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, A. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton studies. Norw. J. Zool. 24: 419–456.

    Google Scholar 

  • Dodson, S. I., 1974. Adaptive change in plankton morphology in response to size selective predation: A new hypothesis of cyclomorphosis. Limnol. Oceanogr. 19: 721–729.

    Google Scholar 

  • Gliwicz, Z. M., 1981. Food and predation in limiting clutch size of cladocerans. Verh. int. Ver. Limnol. 21: 1562–1566.

    Google Scholar 

  • Gliwicz, Z. M. & W. Lampert, 1993. Body-size related survival of cladocerans in a trophic gradient: An enclosure study. Arch. Hydrobiol. 129: 1–23.

    Google Scholar 

  • Gliwicz, Z. M. & J. Pijanowska, 1989. The role of predation in zooplankton succession. In U. Sommer (ed.), Plankton Ecology. Springer-Verlag, Berlin: 253–296.

    Google Scholar 

  • Gliwicz, Z. M. & G. Umana, 1994. Cladoceran body size and vulnerability to copepod predation. Limnol. Oceanogr. 39: 419–424.

    Google Scholar 

  • Grant, J. W. G. & I. A. E. Bayly, 1981. Predator induced crests in morphs of the Daphnia carinataKing complex. Limnol. Oceanogr. 15: 721–729.

    Google Scholar 

  • Haney, J. F. & C. Buchanan, 1987. Distribution and biogeagraphy of Daphniain the arctic. In R. H. Peters & R. DeBernardi (eds), Daphnia. Mem. Ist. Ital. Idrobiol. 45: 77–105.

  • Harbácek, J., 1977. Competition and predation in relation to species composition of freshwater zooplankton, mainly Cladocera. In J. J. Cairns (ed.), Aquatic Microbial Communities. Garland Publishing, Inc., New York: 308–353.

    Google Scholar 

  • Havel, J. E., 1985. Cyclomorphosis of Daphnia pulexspinedmorphs. Limnol. Oceanogr. 30: 853–861.

    Google Scholar 

  • Havel, J. E. & S. I. Dodson, 1984. Chaoboruspredation on typical and spined morphs of Daphnia pulex: Behavioral observations. Limnol. Oceanogr. 29: 487–494.

    Google Scholar 

  • Horn, W., 1985. Investigations into the food selectivity of the planktic crustaceans Daphnia hyalina, Eudiaptomus gracilisand Cyclops vicinus. Int. Revue ges. Hydrobiol. 70: 603–612.

    Google Scholar 

  • Li, J. L. & H. W. Li, 1979. Species-specific factors affecting predator-prey interactions of the copepod Acanthocyclops vernaliswith its natural prey. Limnol. Oceanogr. 24: 613–626.

    Google Scholar 

  • Lüning, J., 1992. Phenotypic plasticity of Daphnia pulexin the presence of invertebrate predators: morphological and life history responses. Oecologia 92: 383–390.

    Google Scholar 

  • Lüning, J., 1995. Life-history responses to Chaoborusos spined and unspined Daphnia pulex.J. Plankton Res. 17: 71–84.

    Google Scholar 

  • Marinone, M. A. & H. E. Zagarese, 1991. A field and laboratory study on factors affecting polymorphism in the rotifer Keratella tropica. Oecologia 86: 372–377.

    Google Scholar 

  • Mort, M., 1986. Chaoboruspredation and the function of phenotypic variation in Daphnia. Hydrobiologia 133: 39–44.

    Google Scholar 

  • Paloheimo, J. E., 1974. Calculation of instantaneous birth rate. Limnol. Oceanogr. 19: 692–694.

    Google Scholar 

  • Polishchuk, L. V., 1994. Cladoceran birth rate dynamics: does population characteristic analysis reflect environmental control? Verh. int. Ver. Limnol. 25: 2369–2371.

    Google Scholar 

  • Polishchuk, L. V., 1995. Direct positive effect of invertebrate predators on birth rate in Daphniawith a new method of birth rate analysis. Limnol. Oceanogr. 40: 483–489.

    Google Scholar 

  • Smyly, W. J. P., 1970. Observations on the rate of development, longevity and fecundity of Acanthocyclops viridis(Jurine) (Copepoda, Cyclopoida) in relation to type of prey. Crustaceana 18: 21–36.

    Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1984. Spine development in the rotifer Keratella cochlearis: induction by cyclopoid copepods and Asplanchna. Freshwat. Biol. 14: 639–647.

    Google Scholar 

  • Taylor, B. E. & W. Gabriel, 1992. To grow or not to grow: optimal resource allocation for Daphnia. Am. Nat. 139: 248–266.

    Google Scholar 

  • Vanni, M. J., 1987. Effects of food availability and fish predation on a zooplankton community. Ecol. Monogr. 57: 61–88.

    Google Scholar 

  • Williamson, C. E., 1983. Behavioral interactions between a cyclopoid copepod predator and its prey. J. Plankton Res. 5: 701–711.

    Google Scholar 

  • Zaret, T., 1980. Predation in freshwater communities. Yale University Press, New Haven, Connecticut, 187 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caramujo, MJ., Crispim, M.C. & Boavida, MJ. Assessment of the importance of fish predation versus copepod predation on life history traits of Daphnia hyalina. Hydrobiologia 360, 243–252 (1997). https://doi.org/10.1023/A:1003171828299

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003171828299

Navigation