, Volume 362, Issue 1–3, pp 67–77 | Cite as

Physical and chemical characteristics of ephemeral pond habitats in the Maracaibo basin and Llanos region of Venezuela

  • Jason E. Podrabsky
  • Tomas Hrbek
  • Steven C. Hand


Physical and chemical variables of ephemeral rainwaterpond habitats in the Maracaibo basin and Llanos regionof Venezuela were investigated to assess environmentalfeatures important for future studies of thephysiological ecology and bioenergetics of annualkillifish. Dissolved oxygen, temperature, pH, Eh, andconductivity measurements were made in the field ateach collection site. Water and filter samples werecollected and analyzed for trace metals, cations,anions, and osmolality. Physical and chemicalcharacteristics of rainwater ponds are highly variableboth temporally and spatially. Large diurnalfluctuations occur in temperature and dissolvedoxygen. Dissolved oxygen content, temperature, pH andconductivity values exhibit a high degree of interpoolvariation. All pools sampled have a high amount ofsuspended solids consistent with high turbidity. Poolsediments appear to be anoxic as indicated bymeasurement of Eh. Llanos region pools are dominatedby calcium as the major cation, while Maracaibo basinpools are dominated by sodium as the major cation. Maracaibo pools can be further separated into twodistinct regions, inland savanna and coastal desert,based on ionic composition. Annual killifishinhabiting ephemeral ponds may be exposed to extremesin dissolved oxygen concentration, temperature and pHvalues during adult, juvenile, and embryonic stages.

annual killifish Austrofundulus Maracaibo ephemeral ponds freshwater water chemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bamforth, S. S., 1962. Diurnal changes in shallow aquatic habitats. Limnol. Oceanogr. 7: 348–353.CrossRefGoogle Scholar
  2. Clesceri, L. S., A. E. Greenberg, R. R. Trussell & M. A. H. Franson (eds), 1989. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, D.C. USA.Google Scholar
  3. Cole, G. A., 1968. Desert limnology. In G.W. Brown Jr. (ed.). Desert Biology. Academic Press, N.Y. USA: 423–486.Google Scholar
  4. Hamilton, S. K. & W. M. Lewis, Jr., 1990. Basin morphology in relation to chemical and ecological characteristics of lakes on the Orinoco River floodplain, Venezuela. Arch. Hydrobiol. 119: 393–425.Google Scholar
  5. Hammer, M. L. & C. C. Appleton, 1991. Physical and chemical characteristics and phyllopod fauna of temporary pools in northeastern Natal, Republic of South Africa. Hydrobiologia 212: 95–104.CrossRefGoogle Scholar
  6. Hand, S. C., 1991. Metabolic dormancy in aquatic invertebrates. In R. Gilles (ed.). Advances in comparative and environmental physiology, vol. 8. Springer Verlag, Berlin: 1–50.Google Scholar
  7. Lewis, W. M. Jr., S. K. Hamilton & J. F. Saunders III, 1995. Rivers of northern South America. In C. Cushing & K. Cummins (eds). Ecosystems of the World: Rivers. Elsevier, NY. USA: 219–256.Google Scholar
  8. Lilyestrom, C. & D. Taphorn, 1982. El control biologico de mosquitos mediante peces en la cuenca del Lago de Maracaibo, Venezuela. Informe Technico delVice–Rectorado de Produccion No. 6. UNELLEZ: 1–38.Google Scholar
  9. Mathews, B.W., L. E. Sollenberger, V.D. Nair & C. R. Staples, 1994. Impact of grazing management on soil nitrogen, phosphorus, potassium, and sulfur distribution. J. envir. Qual. 23: 1006–1013.CrossRefGoogle Scholar
  10. Morales, J. A., C. Bifano & A. Escalona, 1995. Rainwater chemistry at the western region of the Lake Maracaibo basin, Venezuela. Wat. Air Soil Pollut. 85: 2325–2330.CrossRefGoogle Scholar
  11. Nico, L. G. & J. E. Thomerson, 1989. Ecology, food habits and spatial interactions of Orinoco basin annual killifish. Acta Biol. Venez. 12: 106–120.Google Scholar
  12. Peters, N., 1963. Embryonale anpassungen oviparer zahnkarpfen aus periodisch austrocknenden gewassern. Int. Rev. ges. Hydrobiol. 48: 257–313.Google Scholar
  13. Scholnick, D. A., 1994. Seasonal variation and diurnal fluctuations in ephemeral desert pools. Hydrobiologia 294: 111–116.CrossRefGoogle Scholar
  14. Sposito, G., 1989. The Chemistry of Soils. Oxford University Press. Oxford, NY. USA: 106–123.Google Scholar
  15. Thomerson, J. & D. Taphorn, 1992a. The annual killifishes of Venezuela part I: Maracaibo basin and coastal plain species. Trop. Fish Hobbyist. Jan.: 70–96.Google Scholar
  16. Thomerson, J. & D. Taphorn, 1992b. The annual killifishes of Venezuela part II: Species of the Orinoco Llanos. Trop. Fish Hobbyist. Feb.: 76–112.Google Scholar
  17. Thurman, H. V., 1988. Introductory oceanography, 5th edn. Merrill Publishing Co. Columbus, OH. USA.Google Scholar
  18. Williams, W. D., 1985. Biotic adaptations in temporary lentic waters, with special reference to those in semiarid and arid regions. Hydrobiologia 125: 85–110.CrossRefGoogle Scholar
  19. Wourms, J. P., 1972a. The developmental biology of annual fishes I. Stages in the normal development of Austrofundulus myersi Dahl. J. Exp. Zool. 182: 143–168.PubMedCrossRefGoogle Scholar
  20. Wourms, J. P., 1972b. The developmental biology of annual fishes II. Naturally occurring dispersion and reaggregation of blastomeres during the development of annual fish eggs. J. Exp. Zool. 182: 169–200.PubMedCrossRefGoogle Scholar
  21. Wourms, J. P., 1972c. The developmental biology of annual fishes III. Preembryonic and embryonic diapause of variable duration in the eggs of annual fishes. J. Exp. Zool. 182: 389–414.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Jason E. Podrabsky
    • 1
  • Tomas Hrbek
    • 2
  • Steven C. Hand
    • 1
  1. 1.Department of Environmental, Population and Organismic BiologyUniversity of ColoradoBoulderUSA
  2. 2.Department of BiologyWashington UniversitySt. LouisUSA

Personalised recommendations