, Volume 363, Issue 1–3, pp 333–339 | Cite as

Zooplankton-phytoplankton interactions: a possible explanation of the seasonal succession in the Kuršių Marios lagoon

  • Zita Rasuolė Gasiūnaitė
  • Irina Olenina


The zooplankton-phytoplankton interactions inthe Kuršių Marios lagoon (southeastern Baltic Sea)were investigated in 1995. The objective was toevaluate the role of herbivores (crustaceanzooplankton) in the seasonal succession ofphytoplankton, as well as the influence of foodconditions on structure and dynamics of zooplanktoncommunity. Our results demonstrated that thecrustacean grazing pressure may restrict thedevelopment of small Chlorophyta and Diatomophyceaeand, in turn, favouring growth of Cyanobacteria.Blooms of filamentous Cyanobacteria possibly has aninhibitory effect for Daphnia, decreasing theirbiomass as well possibly explaining the shift ofdominant zooplankton species. The influence ofplanktivory on seasonal plankton succession remainsunclear because of lack of fish data.

zooplankton phytoplankton trophicinteractions seasonal succession Cyanobacteriablooms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.PubMedGoogle Scholar
  2. Carpenter, S. R., J. A. Morrice, J. J. Elser, A. S. Amand & N. A. MacKay, 1996a. Phytoplankton community dynamics. In S. R. Carpenter & J. F. Kitchell (eds), The Trophic Cascade in Lakes. Cambridge University Press: 189–209.Google Scholar
  3. Carpenter, S. R., J. A. Morrice, P. A. Soranno, J. J. Elser, N. A. MacKay & A. S. Amand, 1996b. Primary production and its interactions with nutrients and light transmission. In S. R. Carpenter & J. F. Kitchell (eds), The Trophic Cascade in Lakes. Cambridge University Press: 189–209.Google Scholar
  4. DeMott, W. R., 1989. The role of competition in zooplankton succession. In Plankton Ecology: Succession in Plankton Communities, U. Sommer (ed.), Berlin. Springer-Verlag: 195–252.Google Scholar
  5. Edgar, N. B. & J. D. Green, 1994. Calanoid copepod grazing on phytoplankton; seasonal experiments on natural communities. Hydrobiologia 273: 147–161.CrossRefGoogle Scholar
  6. Gliwicz, Z. M. & W. Lampert, 1993. Body-size related survival of cladocerans in a trophic gradient: an enclosure study. Arch. Hydrobiol. 129: 1–23.Google Scholar
  7. Gliwicz, Z. M. & J. Pijanowska, 1989. The role of predation in zooplankton succession. In Plankton Ecology: Succession in Plankton Communities, U. Sommer (ed.), Berlin. Springer-Verlag: 253–296.Google Scholar
  8. Hall, D. J., S. T. Threlkeld, C.W. Burns & P. H. Crowley, 1976. The size-efficiency hypothesis and the size structure of zooplankton communities. Annu. Rev. Ecol. Syst. 7: 177–208.CrossRefGoogle Scholar
  9. Hawkins, P. & W. Lampert, 1989. The effect of Daphniabody size on filtering rate inhibition in the presence of a filamentous cyanobacterium. Limnol. Oceanogr. 34: 1084–1089.CrossRefGoogle Scholar
  10. HELCOM, 1988. Guidelines for the Baltic monitoring programme for the third stage. Part D. Biological determinants, 27D: 164.Google Scholar
  11. Hällfors, G. & A. Niemi, 1990. Proposal for standartization of the way of presenting phytoplankton results. Fin. Mar. Res. 257: 29–36.Google Scholar
  12. Jorgensen, S. E., S. N. Nielsen & L. A. Jorgensen (eds), 1991. Handbook of Ecological Parameters and Ecotoxicology. Elsevier Science Publishers B.V.: 1263.Google Scholar
  13. Kitchell, J. F. & S. R. Carpenter, 1996. Cascading trophic interactions. In S. R. Carpenter & J. F. Kitchell (eds), The Trophic Cascade in Lakes. Cambridge University Press: 1–14.Google Scholar
  14. Kivi, K., S. Kaitala, H. Kuosa, J. Kuparinen, E. Leskinen, R. Lignell, B. Marcussen & T. Tamminen, 1993. Nutrient limitation and grazing control of the Baltic plankton community during annual succession. Limnol. Oceanogr. 38: 893–905.CrossRefGoogle Scholar
  15. Naumenko, E., 1996. Species composition, seasonal and long-term dynamics of zooplankton abundance and biomass in the Currish lagoon of the Baltic Sea. ICES C.M. 1996/ L: 12 Ref. J.: 19.Google Scholar
  16. Porter, K. G., 1977. The plant-animal interface in freshwater ecosystems. Am. Sci. 65: 159–170.Google Scholar
  17. Pustelnikovas, O., 1994. Transport and accumulation of sediment and contaminants in the lagoon of Kuršių Marios (Lithuania) and Baltic Sea. Neth. J. Aquat. Ecol. 28: 405–411.CrossRefGoogle Scholar
  18. Riegman, R., B. R. Kuipers, A. A. M. Noordeloos & H. J. White, 1993. Size differential control of phytoplankton and the structure of plankton communities. Neth. J. Sea Res. 31: 255–265.CrossRefGoogle Scholar
  19. Salazkin, A. A., M. B. Ivanova & V. A. Ogorodnikova, 1984. Metodicheskie rekomendacyi po sboru i obrabotke materialov pri hydrobiologicheskikh issledovanijakc na presnovodnykh vodoje vodojemakh: zooplankton i ego produkcija. [Methodical recommendations for data collecting and analysis in hydrobiological studies of fresh waters: Productivity of zooplankton]. Leningrad: 33 (in Russian).Google Scholar
  20. Sarnelle, O., 1993. Herbivore effects on phytoplankton succession in a eutrophic lake. Ecol. Monographs 63: 129–149.CrossRefGoogle Scholar
  21. Sommer, U., 1987. Factors controlling the seasonal variation in phytoplankton species composition–a case study for a deep, nutrient rich lake. Prog. Phycol. Res. 5: 123–178.Google Scholar
  22. Stankevičius, A. (ed.), 1996. Annual report of scientific work. Center of Marine Research, Klaipeda: 92 pp.Google Scholar
  23. Sterner, R. W., 1989. The role of grazers in phytoplankton succession. In U. Sommer (ed.), Plankton Ecology: Succession in Plankton Communities, Springer-Verlag, Berlinn: 70–107.Google Scholar
  24. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodic. Fur theoretishe und angewandte Limnologie 9: 1–39.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Zita Rasuolė Gasiūnaitė
    • 1
  • Irina Olenina
    • 2
  1. 1.Centre for System AnalysisKlaipėda UniversityKlaipėdaLithuania
  2. 2.Centre for Marine ResearchKlaipėdaLithuania

Personalised recommendations