Skip to main content
Log in

Fish effects on trophic relationships in the pelagic zone of lakes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

To examine the relationships between the biomass of pelagic communities and to study how these relationships differ between lakes with different fish assemblages, we used data on nutrients, chlorophyll, zooplankton, and fish from 96 Argentinean lakes and reservoirs. Significant differences in regressions between chlorophyll and total phosphorus, macrozooplankton and chlorophyll, and between total fish and macrozooplankton, in lakes with different fish assemblages, were found. Lakes with zooplanktivorous fishes but without piscivores, and lakes without planktivores, had the highest and the lowest phytoplankton biomass, respectively. The regression line for lakes with both types of fish were intermediate. Furthermore, lakes with planktivores, but without piscivores, had the lowest macrozooplankton. The analysis of the trend in simple regression residuals suggests that the changes in chlorophyll, macrozooplankton, and total fish with lake trophy, are related to changes in fish assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baigun, C. R. M. & R. Quirós, 1985. Introduccion de peces exoticos en la Republica Argentina. Informes Tecnicos del Departamento de Aguas Continentales N-2. Instituto Nacional de Investigacion y Desarrollo Pesquero, Mar del Plata, Argentina, 90 pp.

    Google Scholar 

  • Bays, J. S. & T. L. Crisman, 1983. Zooplankton and trophic state relationships in Florida lakes. Can. J. Fish. aquat. Sci. 40: 1813–1819.

    Google Scholar 

  • Benndorf, J., 1987. Food web manipulation without nutrient control: a useful strategy in lake restoration?. Schweiz. Z. Hydrol. 49: 237–248.

    Google Scholar 

  • Benndorf, J., 1988. Objectives and unsolved problems in ecotechnology and biomanipulation: a preface. Limnologica (Berlin) 19: 5–8.

    Google Scholar 

  • Benndorf, J., 1989. Food-web manipulations as a tool in water-quality management. JWSRT-Aqua 38: 296–304.

    Google Scholar 

  • Bird, D. F. & J. Kalff, 1984. Empirical relationships between bacterial abundance and chlorophyll concentration in fresh and marine waters. Can. J. Fish. aquat. Sci. 41: 1015–1023.

    Google Scholar 

  • Brabrand, A., B. J. Faafeng & J. P. M. Nilssen, 1990. Relative importance of phosphorus supply to phytoplankton production: fish excretion versus external loading. Can. J. Fish. aquat. Sci. 47: 364–372.

    Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Google Scholar 

  • Carpenter, S. R. & J. F. Kitchell, 1988. Consumer control of lake productivity. Large-scale experimental manipulations reveal complex interactions among lakes organisms. BioScience 38: 764–769.

    Google Scholar 

  • Carpenter, S. R. & J. F. Kitchell, 1992. Trophic cascade and biomanipulation: Interface of research and management - A reply to the comment by DeMelo et al. Limnol. Oceanogr. 37: 208–213.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.

    Google Scholar 

  • Carpenter, S. R. et al., 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.

    Google Scholar 

  • Cleveland, W. S., 1979. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74: 829–836.

    Google Scholar 

  • Dillon, P. J. & F. H. Rigler, 1974. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19: 767–773.

    Google Scholar 

  • Dillon, P. J.& F. H. Rigler, 1975. A simple method for predicting the capacity of a lake for development based on lake trophic status. J. Fish. Res. Bd Can. 32: 1519–1531.

    Google Scholar 

  • Draper, N. R. & H. Smith. 1981. Applied Regression Analysis. John Wiley & Sons, Inc., New York, USA. 709 pp.

    Google Scholar 

  • Ferriz, R. A., 1987. Alimentación del pejerrey patagonico Patagonina hatcheri (Eigenmann, 1909) en el embalse ‘Ramos Mexia’, Neuquen, Argentina. Rev. Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’. Serie Hidrobiologia 6: 61–66.

    Google Scholar 

  • Hanson, J. M. & W. C. Leggett, 1982. Empirical prediction of fish biomass and yield. Can. J. Fish. aquat. Sci. 39: 257–263.

    Google Scholar 

  • Hanson, J. M. & R. H. Peters, 1984. Empirical prediction of crustacean zooplankton biomass and profundal macrobenthos biomass in lakes. Can. J. Fish. aquat. Sci. 41: 439–445.

    Google Scholar 

  • Hintze, J. L., 1988. Number cruncher statistical system (NCSS). Version 5.1. Graphics. Dr Jerry L. Hintze. Kaysville, Utah, USA, 69 pp.

    Google Scholar 

  • Hrbacek, J., M. Dvorakova, V. Korinek & L. Prochazkova, 1961. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Verh. int. Ver. Limnol. 14: 192–195.

    Google Scholar 

  • Lamarra, V. A., 1975. Digestive activities of carp as a major contributor to the nutrient loading of lakes. Verh. int. Ver. Limnol. 19: 2461–2468.

    Google Scholar 

  • Lyche, A., B. A. Faafeng & A. Brabrand, 1990. Predictability and possible mechanisms of plankton response to reduction of planktivorous fish. Hydrobiologia 200/201: 251–261.

    Google Scholar 

  • Mazumder, A., 1994. Phosphorus - chlorophyll relationships under contrasting herbivory and thermal stratification: predictions and patterns. Can. J. Fish. aquat. Sci. 51: 390–400.

    Google Scholar 

  • Mazumder, A., W. D. Taylor, D. J. McQueen & D. R. S. Lean, 1989. Effects of fertilization and planktivorous fish on epilimnetic phosphorus sedimentation in large enclosures. Can. J. Fish. aquat. Sci. 46: 1735–1742.

    Google Scholar 

  • McCauley, E. & J. Kalff, 1981. Empirical relationships between phytoplankton and zooplankton biomass in lakes. Can. J. Fish. aquat. Sci. 38: 458–463.

    Google Scholar 

  • McCauley, E., J. F. Downing & S. Watson, 1989. Sigmoid relationships between nutrients and chlorophyll among lakes. Can. J. Fish. aquat. Sci. 46: 1171–1175.

    Google Scholar 

  • McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.

    Google Scholar 

  • McQueen, D. J., M. R. S. Johannes, J. R. Post, T. J. Stewart & D. R. S. Lean, 1989. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecol. Monogr. 59: 289–309.

    Google Scholar 

  • McQueen, D. J., M. R. S. Johannes, N. R. Lafontaine, A. S. Young, E. Longbothan & D. R. S. Lean, 1990. Effects of planktivore abundance on chlorophyll-a and Secchi depth. Hydrobiologia 200/201: 337–342.

    Google Scholar 

  • Menu Marque, S. & M. C. Marinone, 1986. El zooplankton de seis lagos del Chubut (Argentina) y sus probables relaciones con la ictiofauna y algunos factores ambientales (p. 90-114). In I. Vila y E. Fagetti (eds) Trabajos presentados al Taller Internacional sobre ecologia y manejo de peces en lagos y embalses. Santiago, Chile, 5-10 de noviembre de 1984. COPESCAL Doc. Tec. 4, 237 pp.

  • Nakashima, B. S. & W. C. Leggett, 1980. The role of fishes in the regulation of phosphorus availability in lakes. Can. J. Fish. aquat. Sci. 37: 1540–1549.

    Google Scholar 

  • Northcote, T. G., 1988. Fish in the structure and function of freshwater ecosystems: a ‘top-down’ view. Can. J. Fish. aquat. Sci. 45: 361–379.

    Google Scholar 

  • Oglesby, R. T., 1977. Relationships of fish yield to lake phytoplankton standing crop, production, and morphoedaphic factors. J. Fish. Res. Bd Can. 34: 2271–2279.

    Google Scholar 

  • Pace, M. L., 1984. Zooplankton community structure, but not biomass, influences the phosphorus - chlorophyll a relationship. Can. J. Fish. aquat. Sci. 41: 1089–1096.

    Google Scholar 

  • Persson, L., G. Andersson, S. F. Hamrin & L. Johansson, 1988. Predator regulation and primary production along the productivity gradient of temperate lake ecosystems. In S. R. Carpenter (ed.), Complex Interactions in Lake Communities, Springer-Verlag, New York: 45–65.

    Google Scholar 

  • Prairie, Y. T., C. M. Duarte & J. Kalff, 1989. Unifying nutrient - chlorophyll relationships in lakes. Can. J. Fish. aquat. Sci. 46: 1176–1182.

    Google Scholar 

  • Quirós, R., 1989. Relaciones entre niveles de pigmentos fotosinteticos y diversos factores ambientales en ambientes acuaticos de la Republica Argentina. Doctorate Thesis Dissertation. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Argentina, 258 pp.

    Google Scholar 

  • Quirós, R., 1990a. Predictors of relative fish biomass in lakes and reservoirs of Argentina. Can. J. Fish. aquat. Sci. 47: 928–939.

    Google Scholar 

  • Quirós, R., 1990b. Factors related to variance of residuals in chlorophyll - total phosphorus regressions in lakes and reservoirs of Argentina. Hydrobiologia 200/201: 343–355.

    Google Scholar 

  • Quirós, R., 1991. Empirical relationships between nutrients, phyto and zooplankton, and relative fish biomass in lakes and reservoirs of Argentina. Verh. int. Ver. Limnol. 24: 1198–1206.

    Google Scholar 

  • Quirós, R., 1995. Fish effects on pelagic-trophic relationships in a comparative lake study. Lake and Reservoir Management 11: 291–298.

    Google Scholar 

  • Quirós, R., 1996. Trophic cascade effects in a temperate-subtropical water body continuous. Verh. int. Ver. Limnol. 26 (in press).

  • Quirós, R., C. R. M. Baigun, S. Cuch, R. Delfino, A. De Nichilo, C. Guerrero, M. C. Marinone, S. Menu Marque & M. C. Scapini, 1988. Evaluacion del rendimiento pesquero potencial de la republica Argentina: I. Datos 1. Instituto Nacional de Investigación y Desarrollo Pesquero. Informes Tecnicos del Departamento de Aguas Continentales N-7, 55 pp.

  • Reynolds, C. S. & A. E. Walsby, 1975. Waterblooms. Biol. Rev. 50: 437–481.

    Article  Google Scholar 

  • Ringuelet, R. A., 1975. Zoogeografia y ecologia de los peces de las aguas continentales de la Argentina y consideraciones sobre las areas ictiologicas de America del sur. Ecosur 2: 1–122.

    Google Scholar 

  • Ringuelet, R. A., R. H. Aramburu & A. Alonso de Aramburu, 1967. Los peces argentinos de agua dulce. Comision de Investigacion Cientifica. Gobernacion de la Provincia de Buenos Aires, La Plata, Argentina, 602 pp.

    Google Scholar 

  • Rognerud, S. & G. Kjellberg, 1984. Relationships between phytoplankton and zooplankton biomass in large lakes. Verh. int. Ver. Limnol. 22: 666–671.

    Google Scholar 

  • Ryder, R. A., 1978. Fish yield assessment of large lakes and reservoirs - a prelude to management. In S. D. Gerking (ed.), Ecology of Freshwater Fish Production, Black. Sci. Publ., London: 403–423.

    Google Scholar 

  • Ryder, R. A., S. K. Kerr, K. H. Loftus & H. A. Regier, 1974. The morphoedaphic index, a fish yield estimator - review and evaluation. J. Fish. Res. Bd Can. 31: 663–688.

    Google Scholar 

  • Sakamoto, M., 1966. Primary production by the phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch. Hydrobiol. 62: 1–28.

    Google Scholar 

  • Schindler, D. W., E. J. Fee & T. Ruszczynski, 1978. Phosphorus input and its consequences for phytoplankton standing crop and production in the Experimental Lakes Area and in similar lakes. J. Fish. Res. Bd Can. 35: 190–196.

    Google Scholar 

  • Shapiro, J., 1980. The importance of trophic-level interactions to the abundance and species composition of algae in lakes. In Barica, J. & L. R. Mur (eds), Hypertrophic Ecosystems. Dr W. Junk Publishers, The Hague: 105–116.

    Google Scholar 

  • Shapiro, J., V. Lamarra & M. Lynch, 1975. Biomanipulation: an ecosystem approach to lake restoration. In P. L. Brezonik & J. L. Fox (eds), Proceedings of a Symposium on Water Quality Management through Biological Control. University of Florida, Gainesville, Florida, USA: 85–96.

  • Straskraba, M., 1976. Empirical and analytical models of eutrophication. In Proceedings of an International Symposium on Eutrophication and Rehabilitation of Surface Waters ‘EUTROSYM 76’. Karl-Marx-Stadt, GDR, Vol. III: 352–371.

    Google Scholar 

  • Vollenweider, R. A., 1969. Moglichkeiten und Grenzen elementarer Modelle der Stoffbilanz von Seen. Arch. Hydrobiol. 66: 1–36.

    Google Scholar 

  • Vollenweider, R. A., 1975. Input-output models with special reference to the phosphorus loading concept in limnology. Schweiz. Z. Hydrol. 37: 53–84.

    Google Scholar 

  • Watson, S., E. McCauley & J. A. Downing, 1992. Sigmoid relationships between phosphorus, algal biomass, and algal community structure. Can. J. Fish. aquat. Sci. 49: 2605–2610.

    Google Scholar 

  • Weisberg, S., 1980. Applied Linear Regression. John Wiley and Sons, Inc, New York, 283 pp.

    Google Scholar 

  • Yan, N. D., 1986. Empirical prediction of crustacean zooplankton biomass in nutrient-poor Canadian Shield lakes. Can. J. Fish. aquat. Sci. 43: 788–796.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quirós, R. Fish effects on trophic relationships in the pelagic zone of lakes. Hydrobiologia 361, 101–111 (1997). https://doi.org/10.1023/A:1003157931108

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003157931108

Navigation