Skip to main content
Log in

Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, U.S.A.

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We sampled periphyton in dominant habitats at oligotrophic and eutrophic sites in the northern Everglades during the wet and the dryseasons to determine the effects of nutrient enrichment on periphytonbiomass, taxonomic composition, productivity, and phosphorus storage. Arealbiomass was high (100–1600 g ash-free dry mass [AFDM]m−2) in oligotrophic sloughs and in stands of the emergentmacrophyte Eleocharis cellulosa, but was low in adjacent stands of sawgrass,Cladium jamaicense (7–52 g AFDM m−2). Epipelon biomasswas high throughout the year at oligotrophic sites whereas epiphyton andmetaphyton biomass varied seasonally and peaked during the wet season.Periphyton biomass was low (3–68 g AFDM m−2) and limitedto epiphyton and metaphyton in open-water habitats at eutrophic sites andwas undetectable in cattail stands (Typha domingensis) that covered morethan 90% of the marsh in these areas. Oligotrophic periphytonassemblages exhibited strong seasonal shifts in species composition and weredominated by cyanobacteria (e.g., Chroococcus turgidus, Scytonema hofmannii)during the wet season and diatoms (e.g. Amphora lineolata, Mastogloiasmithii) during the dry season. Eutrophic assemblages were dominated byCyanobacteria (e.g., Oscillatoria princeps) and green algae (e.g., Spirogyraspp.) and exhibited comparatively little seasonality. Biomass-specific grossprimary productivity (GPP) of periphyton assemblages in eutrophic openwaters was higher than for comparable slough assemblages, but areal GPP wassimilar in these eutrophic (0.9–9.1 g C m−2d−1) and oligotrophic (1.75–11.49 g C m−2d−1) habitats. On a habitat-weighted basis, areal periphytonGPP was 6- to 30-fold lower in eutrophic areas of the marsh due to extensiveTypha stands that were devoid of periphyton. Periphyton at eutrophic siteshad higher P content and uptake rates than the oligotrophic assemblage, butstored only 5% as much P because of the lower areal biomass.Eutrophication in the Everglades has resulted in a decrease in periphytonbiomass and its contribution to marsh primary productivity. These changesmay have important implications for efforts to manage this wetland in asustainable manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association, American Water Works Association & theWater Pollution Control Federation, 1989. Standard Methods for the Examination ofWater andWastewater, 17th edn. American Public Health Association, Washington, D.C.

    Google Scholar 

  • Belanger, T. V. & J. R. Platko II, 1986. Dissolved oxygen budgets in the Everglades Water Conservation Area 2A. Report to the South Florida Water Management District, West Palm Beach, FL, 107 pp.

  • Belanger, T. V., D. J. Scheidt & J. R. Platko II, 1989. Effects of nutrient enrichment on the Florida Everglades. Lake and Reservoir Mgmt. 5: 101–111.

    Article  Google Scholar 

  • Browder, J. A., D. Cottrell, M. Brown, M. Newman, R. Edwards, J. Yuska, M. Browder & J. Krakoski, 1982. Biomass and primary production of microphytes and macrophytes in periphyton habitats of the southern Everglades. Report T662, South Florida Research Center, Homestead, FL, 49 pp.

  • Browder, J. A., P. J. Gleason & D. R. Swift, 1994. Periphyton in the Everglades: spatial variation, environmental correlates, and ecological implications. In S. M. Davis & J. C. Ogden (eds), Everglades: The Ecosystem and its Restoration. St. Lucie Press, Delray Beach, (FL): 379–418.

    Google Scholar 

  • Campeau, S., H. R. Murkin & R. D. Titman, 1994. Relative importance of algae and emergent plant litter to freshwater marsh invertebrates. Can. J. Fish. aquat. Sci. 51: 681–692.

    Article  Google Scholar 

  • Davis, S. M., 1982. Patterns of radiophosphorus accumulation in the Everglades after its introduction into surface water. Technical Publication 82–2, South Florida Water Management District, West Palm Beach, FL, 28 pp.

    Google Scholar 

  • Davis, S. M., 1989. Sawgrass and cattail production in relation to nutrient supply in the Everglades. In R. R. Sharitz & J.W. Gibbons (eds), Freshwater Wetlands and Wildlife. Office of Scientific and Technical Information, U.S. Department of Energy, Oak Ridge (TN): 325–341.

    Google Scholar 

  • Davis, S. M., 1994. Phosphorus inputs and vegetation sensitivity in the Everglades. In S. M. Davis & J. C. Ogden (eds), Everglades: The Ecosystem and its Restoration. St. Lucie Press, Delray Beach (FL): 357–378.

    Google Scholar 

  • Denicola, D. M., K. D. Hoagland & S. C. Roemer, 1992. Influences of canopy cover on spectral irradiance and periphyton assemblages in a prairie stream. J.N. Am Benthol. Soc. 11: 391–404.

    Article  Google Scholar 

  • Dillon, W. R. & M. Goldstein, 1984. Multivariate Analysis: Methods and Applications. John Wiley & Sons, New York, 587 pp.

    Google Scholar 

  • Dolan, T. J., S. E. Bayley, J. Zoltek Jr. & A. J. Hermann, 1981. Phosphorus dynamics of a Florida freshwater marsh receiving treated wastewater. J. appl. Ecol. 18: 205–219.

    Article  CAS  Google Scholar 

  • Flora, M. D. & P. C. Rosendahl, 1982. An analysis of surface water nutrient concentrations in the Shark River Slough, 1972–1980. Report T653, South Florida Research Center, Homestead, FL, 40 pp.

    Google Scholar 

  • Gleason, P. J. & W. Spackman, 1974. Calcareous periphyton and water chemistry in the Everglades. In P. J. Gleason (ed.), Environments of South Florida: Past and Present, Memoir No. 2. Miami Geological Society, Coral Gables (FL): 225–248.

    Google Scholar 

  • Goldsborough, L. G. & G. G. C. Robinson, 1996. Pattern in wetlands. In R. J. Stevenson, M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, New York: 77–117.

    Google Scholar 

  • Grimshaw, H. J., R. G. Wetzel, M. Brandenburg, M. Segerblom, L. J. Wenkert, G. A. Marsh, W. Charnetzky, J. E. Haky & C. Carraher, 1997. Shading of periphyton communities by wetland emergent macrophytes: decoupling of algal photosynthesis from microbial nutrient retention. Arch. Hydrobiol. 139: 17–21.

    CAS  Google Scholar 

  • Gunderson, L. H., 1994. Vegetation of the Everglades: determinants of community composition. In S. M. Davis & J. C. Ogden (eds), Everglades: The Ecosystem and its Restoration. St. Lucie Press, Delray Beach (FL): 323–340.

    Google Scholar 

  • Gunderson, L. H. & W. F. Loftus, 1993. The Everglades. In W. H. Martin, S. G. Boyce & A. C. Echternacht (eds), Biodiversity of the Southeastern United States: Terrestrial Communities. John Wiley & Sons, New York: 199–255.

    Google Scholar 

  • Hann, B. J., 1991. Invertebrate grazerperiphyton interactions in a eutrophic marsh pond. Freshwat. Biol. 26: 87–96.

    Article  Google Scholar 

  • Hansson, L.-A., 1992. Factors regulating periphytic algal biomass. Limnol. Oceanogr. 37: 322–328.

    CAS  Google Scholar 

  • Havens, K. E., T. L. East, S-J. Hwang, A. J. Rodusky, B. Sharfstein & A. D. Steinman, in press. Algal responses to nutrient additions in a littoral mesocosm experiment: biomass, productivity, and nutrient uptake rates. Oikos.

  • Hill, W. R., 1996. Effects of light. In R. J. Stevenson, M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, New York: 121–149.

    Google Scholar 

  • Howard-Williams, C., 1985. Recycling and retention of nitrogen and phosphorus in wetlands: theoretical and applied perspective. Freshwat. Biol. 15: 391–431.

    Article  CAS  Google Scholar 

  • Hunt, B. P., 1952. Food relationships between Florida Spotted gar and other organisms in the Tamiami Canal, Dade County, Florida. Trans. Am. Fish. Soc. 82: 13–33.

    Article  Google Scholar 

  • Hustedt, F., 1930. Bacillariophyta (Diatomeae). In A. Bascher (ed.), Die Süswasser-Flora Mitteleuropas. Gustav Fischer, Jena, Germany. Heft 10, 466 pp.

    Google Scholar 

  • Hwang, S-J., K. E. Havens & A. D. Steinman, in press. Competition for phosphate between planktonic and benthic communities in a shallow subtropical lake. Freshwat. Biol.

  • Jensen, J. R., K. Rutchey, M. S. Koch & S. Narumalani, 1995. Inland wetland change detection in the Everglades Water Conservation Area 2A using time series of normalized remotely sensed data. Photogramm. Eng. Remote Sensing 61: 199–209.

    Google Scholar 

  • Koch, M. S. & K. R. Reddy, 1992. Distribution of soil and plant nutrients along a trophic gradient in the Florida Everglades. Soil Sci. Soc. Am. J. 56: 1492–1499.

    Article  Google Scholar 

  • Lamberti, G. A. 1996. The role of periphyton in benthic food webs. In R. J. Stevenson, M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, New York: 533–573.

    Google Scholar 

  • Lamberti, G. A. & J. W. Moore, 1984. Aquatic insetcs as primary consumers. In V. H. Resh & D.M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger Publishers, New York: 164–195.

    Google Scholar 

  • Leith, H., 1975. Primary productivity of the major vegetation units of the world: In H. Leith & R. H. Whittaker (eds), Primary Productivity of the Biosphere. Springer Verlag, New York: 203–216.

    Google Scholar 

  • Light, S. S. & J. W. Dineen, 1994. Water control in the Everglades: a historical perspective. In S. M. Davis & J. C. Ogden (eds), Everglades: The Ecosystem and its Restoration. St. Lucie Press, Delray Beach (FL): 47–84.

    Google Scholar 

  • Likens, G. E., 1975. Primary productivity of inland aquatic ecosystems. In H. Leith & R. H. Whittaker (eds), Primary Productivity of the Biosphere. Springer Verlag, New York: 185–202.

    Google Scholar 

  • MacVicar, T. K., 1983. Rainfall averages and selected extremes for central and south Florida. Technical Publication 832, South Florida Water Management District, West Palm Beach, Florida, 31 pp.

    Google Scholar 

  • McCormick, P. V., M. J. Chimney & D. R. Swift, 1997. Diel oxygen profiles and water column community metabolism in the Florida Everglades, U.S.A. Arch. Hydrobiol. 140: 117–129.

    CAS  Google Scholar 

  • McCormick, P. V. & M. B. O’Dell, 1996. Quantifying periphyton responses to phosphorus enrichment in the Florida Everglades: a synopticexperimental approach. J.N. am. Benthol. Soc. 15: 450–468.

    Article  Google Scholar 

  • McCormick, P. V., P. S. Rawlik, K. Lurding, E. P. Smith & F. H. Sklar, 1996. Periphyton-water quality relationships along a nutrient gradient in the northern Everglades. J.N. am. Benthol. Soc. 15: 433–449.

    Article  Google Scholar 

  • McCormick, P. V. & L. J. Scinto, in review. Influence of phosphorus loading on wetland periphyton assemblages. In K. R. Reddy (ed), Phosphorus Biogeochemistry in Florida Ecosystems.

  • McCormick, P. V. & R. B. E. Shuford III, in review. Periphyton-phosphorus fluxes in a constructed wetland in south Florida. J. Envir. Qual.

  • McDougal, R. L., L. G. Goldsborough & B. J. Hann, 1997. Responses of a prairie wetland to press and pulse additions of inorganic nitrogen and phosphorus: production by planktonic and benthic algae. Arch. Hydrobiol. 140: 145–167.

    CAS  Google Scholar 

  • Mihuc, T.& D. Toetz, 1994. Determination of diets of alpine aquatic insects using stable isotopes and gut analysis. Am. Midl. Nat. 131: 146–155.

    Article  Google Scholar 

  • Mitsch, W. J. & J. G. Gosselink, 1993. Wetlands (2nd edn). Van Nostrand Reinhold, New York, 722 pp.

    Google Scholar 

  • Moraghan, J. T., 1993. Loss and assimilation of 15N-nitrate added to a North Dakota cattail marsh. Aquat. Bot. 46: 225–234.

    Article  CAS  Google Scholar 

  • Mulholland, P. J., A. D. Steinman, E. R. Marzolf, S. P. Hendricks, R. V. Wilkerson & A. K. Baybayan, 1994. Effect of periphyton biomass on hydraulic characteristics and nutrient cycling in streams. Oecologia 98: 40–47.

    Article  Google Scholar 

  • Murkin, E. J., H. R. Murkin & R. D. Titman, 1992. Nektonic invertebrate abundance and distribution at the emergent vegetation-open water interface in the Delta Marsh, Manitoba, Canada. Wetlands 12: 45–52.

    Google Scholar 

  • Neill, C. & J. C. Cornwell, 1992. Stable carbon, nitrogen, and sulfur isotopes in a prairie marsh food web. Wetlands 12: 217–224.

    Google Scholar 

  • Newman, R. M., 1991. Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. J.N. Am. Benthol. Soc. 10: 89–114.

    Article  Google Scholar 

  • Oswald, W. J. & H. B. Gataas, 1957. Photosynthesis in sewage treatment. Trans. Amer. Soc. Civ. Engin. 122: 73–97.

    Google Scholar 

  • Patrick, R. & C.W. Reimer, 1966. The Diatoms of the United States, 1. Acad. Nat. Sci. Philadelphia, Monogr. 13, 688 pp.

  • Patrick, R. & C.W. Reimer, 1975. The Diatoms of the United States, 2(1). Acad. Nat. Sci. Philadelphia, Monogr. 13, 213 pp.

  • Prescott, G. W., 1973. Algae of the western Great Lakes area, 5th edn. Brown Publishers, Dubuque, IO, 977 pp.

    Google Scholar 

  • Rader, R. B., 1994. Macroinvertebrates of the northern Everglades: species composition and trophic structure. Florida Scientist 57: 22–33.

    Google Scholar 

  • Rader, R. B. & C. J. Richardson, 1992. The effects of nutrient enrichment on algae and macroinvertebrates in the Everglades: a review. Wetlands 12: 121–135.

    Article  Google Scholar 

  • Raschke, R. L., 1993. Diatom (Bacillariophyta) community responses to phosphorus in the Everglades National Park, USA. Phycologia 32: 48–58.

    Google Scholar 

  • Reark, J. B., 1961. Ecological investigations in the Everglades. 2nd annual report to the Superintendent of Everglades National Park. University of Miami, Coral Gables, FL, 19 pp.

    Google Scholar 

  • Robinson, G. G. C., S. E. Gurney & L. G. Goldsborough, 1997. Response of benthic and planktonic algal biomass to experimental water-level manipulations in a prairie lakeshore wetland.Wetlands 17: 167–181.

    Google Scholar 

  • Rutchey, K. & L. Vilchek, 1994. Development of an Everglades vegetation map using a SPOT image and the Global Positioning System. Photogram. Eng. Remote Sen. 60: 767–775.

    Google Scholar 

  • Rutchey, K. & L. Vilchek, in press. Air photo-interpretation and satellite imagery analysis techniques formapping cattail coverage in a northern Everglades impoundment. Photogram. Eng. Remote Sen.

  • Science Subgroup, 1996. South Florida Ecosystem Restoration: Scientific Information Needs. Report to the Working Group of the South Florida Ecosystem Restoration Task Force, 487 pp.

  • Scinto, L. J., 1997. Phosphorus cycling in a periphyton dominated freshwater wetland. Ph.D. Dissertation, University of Florida, Gainesville, FL, 195 pp.

    Google Scholar 

  • South Florida Water Management District, 1992. Surface water improvement and management plan for the Everglades. South Florida Water Management District, West Palm Beach, Florida, 472 pp.

    Google Scholar 

  • South Florida Water Management District, 1996. Draft statement of technical issues and a preliminary proposal for developing water flows and levels criteria in the Lower East Coast Planning Area of south Florida. South FloridaWaterManagement District, West Palm Beach, Florida, 41 pp.

    Google Scholar 

  • Steinman, A. D., R. H. Meeker, A. J. Rodusky, W. P. Davis & C. D. McIntire, 1997. Spatial and temporal distribution of algal biomass in a large subtropical lake. Arch. Hydrobiol. 139: 29–50.

    CAS  Google Scholar 

  • Stevenson, R. J., 1984. Procedures for mounting algae in a syrup medium. Trans. am. Microsc. Soc. 103: 320–321.

    Article  Google Scholar 

  • Swift, D. R. & R. B. Nicholas, 1987. Periphyton and water quality relationships in the Everglades Water Conservation Areas, 1978–1982. Technical Publication 872, South Florida Water Management District, West Palm Beach, Florida, 44 pp.

    Google Scholar 

  • USEPA, 1983. Methods for the chemical analysis of water and wastes. EPA600/479020, revised. Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio.

    Google Scholar 

  • VanLandinham, S. L., 1982. Guide to the identification, environmental requirements and pollution tolerance of freshwater bluegreen algae (Cyanophyta). EPA600/382073. Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, 341 pp.

    Google Scholar 

  • Van Meter-Kasanof, N., 1973. Ecology of the microalgae of the Florida Everglades. Part I. Environment and some aspects of freshwater periphyton, 1959 to 1963. Nova hedwigia 24: 619–664.

    Google Scholar 

  • van Raalte, C. D., I. Valiela & J. M. Teal, 1976. Production of epibenthic saltmarsh algae: light and nutrient limitations. Limnol. Oceanogr. 21: 862–872.

    Google Scholar 

  • Vymazal, J., 1995. Algae and Element Cycling in Wetlands. Lewis Publisher, Boca Raton (FL), 689 pp.

    Google Scholar 

  • Vymazal, J. & C. J. Richardson, 1995. Species composition, biomass, and nutrient content of periphyton in the Florida Everglades. J. Phycol. 31: 343–354.

    Article  Google Scholar 

  • Vymazal, J., C. B. Craft & C. J. Richardson, 1994. Periphyton response to nitrogen and phosphorus additions in the Florida Everglades. Algol. Stud. 73: 75–97.

    Google Scholar 

  • Walker, W. W., Jr., 1995. Design basis for Everglades Stormwater Treatment Areas. Wat. Res. Bull. 31: 671–685.

    Google Scholar 

  • Waller, B. G. & J. E. Earle, 1975. Chemical and biological quality of water in part of the Everglades, southeastern Florida. Water Resources Investigations 56–75. U.S. Geological Survey, Tallahassee, FL, 157 pp.

  • Welsch, R. E., 1977. Stepwise multiple comparison procedures. J. Am. Stat. Ass. 72: 359–365.

    Google Scholar 

  • Wetzel, R. G. 1996. Benthic algae and nutrient cycling in lentic freshwater ecosystems. In R. J. Stevenson, M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, New York: 641–667.

    Google Scholar 

  • Wetzel, R. G., & G. E. Likens, 1991. Limnological Analyses, 2nd edn. SpringerVerlag, New York, 391 pp.

    Google Scholar 

  • Whitford, L. A. & G. J. Schumacher, 1973. A Manual of the Freshwater Algae. Sparks Press, Raleigh, NC, 324 pp.

    Google Scholar 

  • Wood, E. J. F. & N. G. Maynard, 1974. Ecology of the microalgae of the Florida Everglades. In P. J. Gleason (ed.), Environments of South Florida: Past and Present, Memoir No. 2.Miami Geological Society, Coral Gables (FL): 123–145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCormick, P.V., Shuford III, R.B.E., Backus, J.G. et al. Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, U.S.A.. Hydrobiologia 362, 185–210 (1997). https://doi.org/10.1023/A:1003146920533

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003146920533

Navigation