Skip to main content
Log in

Transgenic sugar beet tolerant to glyphosate

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Sugar beet (Beta vulgaris L.) lines transformed with the 5-enolpyruvylshikimate-3-phosphate synthase gene (CP4 EPSPS) from Agrobacterium sp. CP4 and a glyphosate oxidase reductase gene (GOX) also isolated from bacteria resulted in the development of lines highly tolerant to glyphosate. Glyphosate (N-phosphonomethyl-glycine) is the active ingredient in Roundup®, herbicide. The EPSPS enzyme is involved in the biosynthesis of aromatic amino acids. Glyphosate binds irreversible to the EPSPS and inhibits the pathway. GOX degrades glyphosate into non-toxic compounds. 260 independent transformants have been evaluated in greenhouse and field trials for tolerance to Roundup® in 1993 and 1994. Variation of tolerance was recorded between different transformants, ranging from complete susceptibility to full tolerance. The Agrobacterium tumefaciens mediated transformation resulted in a negative correlation between copy number of the T-DNA insert and the level of tolerance to the herbicide. Transformants which contain a single copy insert showed tolerance to higher doses of glyphosate than transformants with multiple copies. Two transgenic lines were identified that showed agronomically useful tolerance to glyphosate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry, G., G. Kishore, M. Padgette, K. Kolacz, M. Weldon, D. Re, D. Eichholtz, K. Fincher & L. Hallas, 1992. Inhibitors of Amino Acid Biosynthesis: Strategies for Imparting Glyphosate Tolerance to Crop Plants. In Biosynthesis and Molecular Regulation of Amino Acids in Plants.B.K. Singh H, Flores E and Shannon JC, editors. American Society of Plant Physiologists, 139–145.

  • Benfey, P.N., N-H. Chau, 1989. Regulated genes in transgenic plants. Science 244: 174–188.

    CAS  PubMed  Google Scholar 

  • Delannay, X., T.T. Bauman, D.H. Beighley, M.J. Buettner, H.D. Coble, M.S. DeFelice, C.W. Derting, T.J. Diedrick, J.L. Griffin, E.S. Hagood, F.G. Hancock, S.E. Hart, B.J. La Vallee, M.M. Loux, W.E. Lueschen, K.W. Matson, C.K. Moots, E. Murdock, A.D. Nickel, M.D.K. Owen, E..H. Paschal II, L.M. Prochaska, P.J. Raymond, D.B. Reynolds, W.K. Rhodes, F.W. Roeth, P.L. Sprankle, L.J. Tarochione, C.N. Tinius, R.J. Walker, L.M. Wax, H.D. Weigelt & S.R. Padgette, 1995. Yield evaluation of a glyphosate-tolerant soybean line after treatment with glyphosate. Crop Sci. 35: 1461–1467.

    Article  CAS  Google Scholar 

  • della-Cioppa, G., S.C. Bauer, B.K. Klein, D.M. Shah, R.T. Fraley & G. Kishore, 1986. Translocation of the precursor of 5-enol-pyruvyl-shikimate-3-phosphate synthase into chloroplasts of higher plants in vitro. Proc. Natl. Acad. Sci. USA 83: 6873–6877.

    Article  PubMed  CAS  Google Scholar 

  • Delores, S.C. & R.C. Gardner, 1988. Expression and inheritance of kanamycin resistance in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Mol. Biol. 11: 355–364.

    Article  Google Scholar 

  • Doyle, J.J. & J.L. Doyle, 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15 (published by Life Technologies Inc.).

    Google Scholar 

  • Fry, J.E., A.R. Barnason & M. Hinchee, 1991. Genotype-independent transformation of sugarbeet using Agrobacterium tumefaciens. Third international congress of plant mol. biol., Tuscon, Arizona, USA.

    Google Scholar 

  • Gasser, C.S., J.A. Winter, C.M. Hironaka & D.M. Shah, 1988. Structure, expression, and evolution of the 5-enolpyruvylshikimate-3-phosphate synthase genes of petunia and tomato. J. Biol. Chem. 263: 4280–4289.

    PubMed  CAS  Google Scholar 

  • Gowda, S., F.C. Wu & R.J. Shepard, 1989. Identification of promoter sequences for the major RNA transcripts of figwort mosaic and peanut chlorotic streak viruses (Caulimovirus group). J. Cell. Biochem. 13D(supplement): 301.

    Google Scholar 

  • Hobbs, S.L.A., T.D. Warkentin & C.M.O. DeLong, 1993. Transgenic copy number can be positively or negatively associated with transgene expression. Plant Mol. Biol. 21: 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Holt, J.S., S.B. Powles & J.A.M. Holtum, 1993. Mechanisms and agronomic aspects of herbicide resistance. Annu. Rev. Plant Physiol.

  • Jacq, B., O. Lesobre, S.R. Sanngwan & B.S. Sangwan-Norreel, 1993. Factors influencing T-DNA transfer in Agrobacterium tumefaciens transformation of sugarbeet. Plant Cell Rep. 12: 621–624.

    Article  CAS  Google Scholar 

  • Jefferson, R.A., T.A. Kavanagh & M. Bevan, 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3909.

    PubMed  CAS  Google Scholar 

  • Jefferson, R.A, 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.

    CAS  Google Scholar 

  • Jones, J.D.G., D.E. Gilbert, K.L. Grady & R.A. Jorgensen, 1987. T-DNA structure and gene expression in petunia plants transformed with Agrobacterium tumefaciens C58 derivatives. Mol. Gen. Genet. 207: 478–485.

    Article  CAS  Google Scholar 

  • Jorgensen, J, 1992. Silencing of plant genes by by homologous transgenes. Agbiotech. News Info. 4: 265N–273N

    Google Scholar 

  • Konwar B.K., 1994. Agrobacterium tumefaciens-mediated genetic transformation of sugar beet (Beta Vulgaris L.). J. Plant Biochem & Biotech 3: 37–41.

    Google Scholar 

  • Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Linn, F., I. Heidmann, H. Saedler & P. Meyer, 1990. Epigenetic changes in the expression of the maize A1 gene in petunia hybrida: role of numbers of integrated gene copies and state of methylation. Mol. Gen. Genet. 222: 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Liu, C.-M., P.A. Mclean, C.C. Sookdeo & F.C. Cannon, 1991. Degradation of herbicide glyphosate by members of the family Rhizobiaceae. Appl. and Environ. Microbiol. 57: 1799–1804.

    CAS  Google Scholar 

  • Madsen, K.H. & J.E. Jensen, 1995. Weed control in glyphosate-tolerant sugar beet (Beta vulgaris L.). Weed Res. 35: 105–111.

    CAS  Google Scholar 

  • Maniatis, T., E.F. Fritsch & J. Sambrook, 1982. Molecular Cloning: a Laboratory Manual. Cold Spring Harbour, NY: Cold Spring Harbour Laboratory

    Google Scholar 

  • Matzke, M.A. & A.J.M. Matzke, 1993. Genomic imprinting in plants: parental effects and trans-inactivation phenomena. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 53–76.

    Article  CAS  Google Scholar 

  • Meyer, P.I., I. Heidmann, G. Forkmann & H. Saedler, 1987. A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330: 677–678.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, P, 1995. Variation of transgene expression in plants. Euphytica 85: 359–366.

    Article  CAS  Google Scholar 

  • Miller, S.D & K.J. Fornstrom, 1989. Weed control and labor requirements in sugarbeets. J. Sugar Beets Res. 26: 3–4.

    Google Scholar 

  • Mittelstein, S.O., J. Paszkowski & I. Potrykus, 1991. Reversible inactivation of a transgene inArabidopsis thaliana. Mol. Gen. Genet. 228: 104–112

    Google Scholar 

  • Odell, J.T., F. Nagy & N-H Chua, 1985. Identification of DNA sequences required for activity of the Cauliflower Mosaic Virus 35S promoter. Nature 313: 810–812.

    Article  PubMed  CAS  Google Scholar 

  • Padgette, S.R., K.H. Kolacz, X. Delannay, D.B. Re, B.J. La Vallee, C.N. Tinius, W.K. Rhodes, Y.I. Otero, G.F. Barry, D.A. Eichholtz, V.M. Peschke, D.L. Nida, N.B. Taylor & G.M. Kishore, 1995. Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci. 35: 1451–14611.

    Article  CAS  Google Scholar 

  • Rao, R.N. & S.G. Rogers, 1979. Plasmid pKC7: A vector containing ten restriction endonucleases sites suitable for cloning DNA segments. Gene 7: 79–82.

    Article  PubMed  CAS  Google Scholar 

  • Revenkova, E.V., A.S. Kraev & K.G. Skryabin, 1990. Transformation of cotton (Gossypium-Hirsutun L) by supervirulent Agrobacterium tumefaciens strain A281. Mol. Biol. 24: 1017–1021.

    CAS  Google Scholar 

  • SAS Institute Inc. 1985. SAS user's guide, 5th ed. North Carolina Cary, SAS Institute Inc.

    Google Scholar 

  • Schweizer, E.E., P. Westra, 1991. Potential for weeds to develop resistance to sugar beet herbicides in North America. J. of Sugar Beet Research 28: 1–23.

    Google Scholar 

  • Shah, D.M., R.B. Horsch, H.J. Kle, G.M. Kishore, J.A Winter, N.E. Tumer, C.M. Hironaka, P.R. Sanders, C.S. Gasser, S. Ayken, N.R. Siegel, S.G. Rogers & R.T. Fraley, 1986. Engineering herbicide tolerance in transgenic plants. Science 233: 478–481.

    CAS  PubMed  Google Scholar 

  • Steinrucken, H.C. & N. Amrhein, 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl shikimate acid-2-phosphate synthase. Biochem. Biophys. Res. Commun. 94: 1207–1212.

    Article  PubMed  CAS  Google Scholar 

  • Tai, T.H. & S.D. Tanksley, 1990. A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol. Biol. Rep 8: 297–303.

    Google Scholar 

  • Torstensson, N.T.L. & A. Hamisepp, 1977. Detoxification of glyphosate in soil. Weed Res. 17: 209–212.

    CAS  Google Scholar 

  • Towbin, H., T. Staehelin & J. Gordon, 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76: 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, J.D., M.E. Hirsch-Wyncott, B.A. Larkins & S.B. Gelvin, 1989. Differential accumulation of a transcript driven by the CaMV 35S promoter in transgenic tobacco. Plant Physiol. 90: 1570–1576.

    Article  PubMed  CAS  Google Scholar 

  • von Wordragen, M.F. & H.J.M. Dons, 1992. Agrobacterium tumefaciens-transformation of recalcitrant crops. Plant Mol. Biol. Rep. 10(1): 12–36.

    Google Scholar 

  • Zhou, H., J.W. Arrowsmith, M.E. Fromm, C.M. Hironaka, M.L. Taylot, D. Rodriguez, M.E. Pajeau, S.M. Brown, C.G. Santino & J.E. Fry, 1995. Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep. 15: 159–163.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mannerlöf, M., Tuvesson, S., Steen, P. et al. Transgenic sugar beet tolerant to glyphosate. Euphytica 94, 83–91 (1997). https://doi.org/10.1023/A:1002967607727

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002967607727

Navigation