Skip to main content
Log in

Wide hybridization between wheat (Triticum L.) and lymegrass (Leymus Hochst.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

A total of 240 F1 hybrids was made beween wheat (Triticum aestivum L. em. Thell. (2n = 6x = 42) and T. carthlicum Nevski (2n = 4x = 28)) and perennial lymegrass (North European Leymus arenarius (L.) Hochst. (2n = 8x = 56) and North American L. mollis (Trin.) Pilger (2n = 4x = 28)). The wide crosses yielded embryos in 20% of caryopses and 96% of the embryos developed into normal hybrid plants. The hybrids were vegetatively vigorous, with evidence of the Leymus rhizomatous habit. Those deriving from L. arenarius survived overwintering in Iceland, but the hybrids L. mollis did not, whereas in a milder environment, both showed perenniality. Cytogenetic analysis of root tip cells before the plants were treated with colchicine showed that 21 out of 28 hybrids investigated had chromosome mosaics, with a population of both amphihaploid and amphidiploid cells. This spontaneous doubling of somatic chromosomes occurred in all cross combinations, with the highest average frequency of diploid cells (28%) in T. carthlicum × L. arenarius crosses. A few selfed seeds have been obtained from a T. aestivum × L. arenarius hybrid. All the hybrids were treated twice with colchicine, but the treatment appeared to have little or no effect on the frequency of chromosome doubling in the hybrids deriving from T. aestivum. The frequency of diploid cells, however, increased significantly (e.g. to 80%) in the hybrids deriving from the T. carthlicum parent. Genomic in situ hybridization confirmed the hybridity of the plants and showed that the hybrids were amphiploids containing genomes of both wheat and lymegrass. In situ hybridization using ribosomal DNA probe differentiated chromosomes of L. mollis, L. arenarius from those of wheat. The hybrids are being backcrossed with lymegrass pollen, aiming to domesticate the wild, perennial species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahokas, H., 1970. Some artificial intergeneric hybrids in the Triticeae. Ann Bot Fennici 7: 182–192.

    Google Scholar 

  • Ahokas, H., 1992. Endospermal protein diversity, as revealed by electrophoresis and Ig binding on blotted membranes, in Leymus arenarius from non-littoral, roadside niches. Ann Bot Fennici 29: 295–304.

    CAS  Google Scholar 

  • Anamthawat-Jónsson, K. & S.M. Reader, 1995. Pre-annealing of total genomic DNA probes for simultaneous in situ hybridization in cereal species. Genome 38: 814–816.

    PubMed  Google Scholar 

  • Anamthawat-Jónsson, K., J. Gudmundsson, B.Th. Bragason, P.K. Martin & R.M.D. Koebner, 1994. Perennial lymegrass (Leymus arenarius and L. mollis) as potential crop species for northern latitudes. In: K.B. Jensen, R.R.-C. Wang & C. Jaussi (Eds), Proc 2nd Int Triticeae Symp, pp 59–64. Utah State University Press, Logan, Utah.

    Google Scholar 

  • Comeau, A., G. Fedak, S.-A. St-Pierre & C. Thériault, 1985. Intergeneric hybrids between Triticum aestivum and species of Agropyron and Elymus. Cereal Res Commun 13: 149–153.

    Google Scholar 

  • Dewey, R.D., 1984. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: J.P. Gustafson (Ed.), Proc 16th Stadler Genet Symp, pp. 209–279. Plenum Press, New York.

    Google Scholar 

  • Dong, Y., Y. Zhouzhou & Z. Ganyuan, 1986. Study on hybridization of Triticum aestivum with Leymus multicaulis and Leymus racemosus. In: Z. Li & M.S. Swaminathan (Eds), Proc 1st Int Symp on Chromosome Engineering in Plants, pp. 185–187. Xian, China.

  • Fatih, A.M.B., 1983. Analysis of the breeding potential of wheat-Agropyron and wheat-Elymus derivatives. I. Agronomic and quality characteristics. Hereditas 98: 287–295.

    PubMed  CAS  Google Scholar 

  • Fukuda, K. & S. Sakamoto, 1992. Studies on unreduced gamete formation in hybrids between tetraploid wheats and Aegilops squarrosa L. Hereditas 116: 253–255.

    Google Scholar 

  • Gale, M.D. & T.E. Miller, 1987. The introduction of alien genetic variation in wheat. In: F.G.H. Lupton (Ed.), Wheat breeding; its scientific basis, pp. 173–210. Chapman & Hall, London, New York.

    Google Scholar 

  • Gerlach, W.L. & J.R. Bedbrook, 1979. Cloning and chaterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7: 1869–1885.

    PubMed  CAS  Google Scholar 

  • Greipsson, S. & A.J. Davy, 1994. Germination of Leymus arenarius and its significance for land reclamation in Iceland. Ann Bot 73: 393–401.

    Article  Google Scholar 

  • Griffin, L.C. & R.M. Rowlett, 1981. A ‘lost’ Viking cereal grain. J Ethnobiol 1: 200–207.

    Google Scholar 

  • Jiang, J., B. Friebe & B.S. Gill, 1994. Recent advances in alien gene transfer in wheat. Euphytica 73: 199–212.

    Article  Google Scholar 

  • Klebesadel, L.J., 1985. Beach wildrye. Agroborealis 17: 31–38.

    Google Scholar 

  • Koba, T. & T. Shimada, 1992. Variations in the crossability of common wheat cultivars with cultivated barley. Hereditas 116: 187–192.

    Google Scholar 

  • Koebner, R.M.D., P.K. Martin & K. Anamthawat-Jónsson, 1995. Multiple branching stems in a hybrid between bread wheat (Triticum aestivum) and lymegrass Leymus mollis. Can J Bot 73: 1504–1507.

    Google Scholar 

  • Laurie, D.A. & M.D. Bennett, 1986. Wheat × maize hybridization. Can J Genet Cytol 28: 313–316.

    Google Scholar 

  • Löve, Á. & D. Löve, 1975. Cytotaxonomical atlas of the Arctic flora, vol. 2. J Cramer, Vaduz, Liechtenstein.

    Google Scholar 

  • McGuire, P.E. & J. Dvôrák, 1981. High salt-tolerance potential in wheatgrasses. Crop Sci 21: 702–705.

    Article  Google Scholar 

  • Merker, A., 1992. The Triticeae in cereal breeding. Hereditas 116: 277–280.

    Google Scholar 

  • Mok, D.W.S. & S.J. Peloquin, 1975. Three mechanisms of 2n pollen formation in diploid potatoes. Can J Genet Cytol 17: 217–225.

    Google Scholar 

  • Mujeeb-Kazi, A. & R. Rodriguez, 1981. An intergeneric hybrid of Triticum aestivum L. × Elymus giganteus. J Heredity 72: 253–256.

    Google Scholar 

  • Mujeeb-Kazi, A., M. Bernard, G.T. Bekele & J.L. Miranda, 1983. Incorporation of alien genetic information from Elymus giganteus into Triticum aestivum. In: S. Sakamoto (Ed.), Proc 6th Int Wheat Genet Symp, pp. 223–231. Kyoto.

  • Mujeeb-Kazi, A., S. Roldan & J.L. Miranda, 1984. Intergeneric hybrids of Triticum aestivum L. with Agropyron and Elymus species. Cereal Res Commun 12: 75–79.

    Google Scholar 

  • Mukai, Y., T.R. Endo & B.S. Gill, 1991. Physical mapping of the 18S.26S rRNA multigene family in common wheat: Identification of a new locus. Chromosoma 100: 71–78.

    Article  CAS  Google Scholar 

  • O'Donoughue, L.S. & M.D. Bennett, 1994. Durum wheat haploid production using maize wide-crossing. Theor Appl Genet 89: 559–566.

    Article  Google Scholar 

  • Plourde, A., A. Comeau & C.A. St-Pierre, 1992. Barley yellow dwarf virus resistance in Triticum aestivum × Leymus angustus hybrids. Pl Breeding 108: 97–103.

    Article  Google Scholar 

  • Plourde, A., A. Comeau, G. Fedak & C.A. St-Pierre, 1989a. Intergeneric hybrids of Triticum aestivum × Leymus multicaulis. Genome 32: 282–287.

    Google Scholar 

  • Plourde, A., A. Comeau, G. Fedak & C.A. St-Pierre, 1989b. Production and cytogenetics of hybrids of Triticum aestivum × Leymus innovatus. Theor Appl Genet 78: 436–444.

    Article  Google Scholar 

  • Riley, R. & V. Chapman, 1967. The inheritance in wheat of crossability with rye. Genet Res 9: 259–267.

    Article  Google Scholar 

  • Schwarzacher, T. & A.R. Leitch, 1994. Enzymatic treatment of plant material to spread chromosomes for in situ hybridization. In: P.G. Isaac (Ed.), Methods in Molecular Biology, vol. 28, pp. 153–160. Humana Press, New Jersey.

    Google Scholar 

  • Sharma, H.C. & B.S. Gill, 1983a. Current status of wide hybridization in wheat. Euphytica 32: 17–31.

    Article  Google Scholar 

  • Sharma, H.C. & B.S. Gill, 1983b. New hybrids between Agropyron and wheat. 2. Production, morphology and cytogenetic analysis of F1 hybrids and backcross derivatives. Theor Appl Genet 66: 111–121.

    Article  Google Scholar 

  • Sigurbjörnsson, B., 1962. Studies on the Icelandic Elymus. PhD thesis, Cornell University, USA.

    Google Scholar 

  • Snape, J.W., J. de Buyser, Y. Henry & E. Simpson, 1986. A comparison of methods of halpoid production in a cross of wheat, Triticum aestivum. Pl Breeding 96: 320–330.

    Google Scholar 

  • Tavoletti, S., 1994. Cytological mechanisms of 2n egg formation in a diploid genotype of Medicago sativa subsp. falcata. Euphytica 75: 1–8.

    Article  Google Scholar 

  • Thomas, J.B., P.J. Kaltsikes & R. Glenn, 1981. Relation between wheat-rye crossability and seed set of common wheat after pollination with other species in the Hordeae. Euphytica 30: 121–127.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anamthawat-Jónsson, K., Bödvarsdóttir, S.K., Bragason, B.T. et al. Wide hybridization between wheat (Triticum L.) and lymegrass (Leymus Hochst.). Euphytica 93, 293–300 (1997). https://doi.org/10.1023/A:1002965322262

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002965322262

Navigation