Skip to main content
Log in

Phytoplankton primary production in a shallow, well- mixed, hypertrophic South African lake

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This paper reports on a two-year analysis of the wind climateand its effect on phytoplankton primary production in ashallow (mean depth = 1.9 m), hypertrophic South Africancoastal lake, Zeekoevlei. The lake is subject to continuousmixing of the euphotic zone (Z eu = 0.8 m), andcomplete mixing of the water column to the mean depth on adaily basis. Median annual wind speeds, prevailing fromeither the north or the south, were 6.4 m s−1. There wasan almost total absence of calms, measured as hourly meanwind speeds of <1 m s−1. Notwithstanding the highfrequency of mixing, the lake supports a dense population ofphytoplankton, dominated by Cyanophyte and Chlorophytespecies. Mean concentrations of chlorophyll-a were240 μg l−1. The attenuation of photosyntheticallyavailable radiation, PAR, was high, with mean K dvalues of 6.4 m−1 and water transparencies of <0.5 m.Levels of primary productivity, determined using the lightand dark bottle oxygen method, were very high, comparable toor exceeding that of the most productive systems yet studied.Maximum volumetric productivity ranged from 525 to 1524 mg Cm−3 h−1, and was confined to the upper 0.5 m of thewater column. Daily areal productivity, Σ P d,varied between 1.2 and 4.3 g C m−2 d−1, and that ofthe maximum chlorophyll-a specific photosynthetic rate,P B max, between 1.6 and 7.9 mg C (mgChl-a)−1 h−1. Primary production was limited bywater temperature and the attenuation of PAR. The highfrequency of wind-induced mixing resulted in regular mixingof the phytoplankton through the euphotic zone, and reducedthe overall importance of P max at a single layer inthe depth profile. Similarly, the regularity of mixing wasrecognized as a limitation of the incubation of bottle chainsto determine primary production levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allanson, B. R., R. C. Hart, J. H. O’Keeffe & R. D. Robarts, 1990. Inland Waters of Southern Africa: An Ecological Perspective. Monographiae Biologicae 64. Kluwer Academic Publishers, Dordrecht, 458 pp.

    Google Scholar 

  • Bannister, T. T. & E. A. Laws, 1980. Modelling phytoplankton carbon metabolism. In Falkowski, P. G. (ed.), Primary production ln the sea, Plenum Press, London: 243–258.

    Google Scholar 

  • Barbosa, F. A. R. & J. G. Tundisi, 1980. Primary production of phytoplankton and environmental characteristics of a shallow Quaternary lake at Eastern Brasil. Arch. Hydrobiol. 90: 139–161.

    Google Scholar 

  • Bindloss, M. E., 1974. Primary productivity of phytoplankton in Loch Leven, Kinross. Proc. R. Soc. Edinburgh, 74: 157–181.

    Google Scholar 

  • Carper, G. L. & R. W. Bachmann, 1984. Wind resuspension of sediments in a prairie lake. Can. J. Fish. Aquat. Sc. 41: 1763–1767.

    Google Scholar 

  • Combrink, S., 1994. The zooplankton of Zeekoevlei and Princess Vlei (Western Cape)–a preliminary assessment. Water SA 20: 299–306.

    Google Scholar 

  • Costa, H. H. & P. K. de Silva, 1995. Limnological Research and training in Sri Lanka State of the art and future needs. In Gopal, B. & R. G. Wetzel (eds), Limnology in Developing Countries. International Association for Limnologys 63–103.

  • Cristofor, S., A. Vadineanu, G. Ignat & C. Ciubuc, 1994. Factors affecting light penetration in shallow lakes. Hydrobiologia 275/276: 493–498.

    Google Scholar 

  • Fuggle, R. F., 1978. Surface winds in Greater Cape Town. Volume 2–an atlas of windroses and associated tables. Report to the Cape Town City Council. 27 pp.

  • Fukushima, T. & K. Muraoka, 1981. Current and vertical mixing in a shallow lake. Proc. Int. Assoc. Theoret. Appl. Limnol. 21: 141–149.

    Google Scholar 

  • Gale, P. M. & K. R. Reddy, 1994. Carbon flux between sediment and water column of a shallow, subtropical hypereutrophic lake. J. Envir. Qual. 23: 965–972.

    Google Scholar 

  • Ganf, G. G., 1974. Diurnal mixing and the vertical distribution of phytoplankton in a shallow equatorial lake (Lake George, Uganda). J. Ecol. 62: 611–629.

    Google Scholar 

  • Grobbelaar, J. U., 1985a. Phytoplankton productivity in turbid waters. J. Plankt. Res. 7: 653–663.

    Google Scholar 

  • Grobbelaar, J.U., 1985b. Carbon flow in the pelagic zone of a shallow turbid impoundment, Wuras Dam. Arch. Hydrobiol. 103: 1–24.

    Google Scholar 

  • Harding, W. R., 1992. Zeekoevlei–Water Chemistry and phytoplankton periodicity. Water SA 18: 237–246.

    Google Scholar 

  • Harding, W. R., 1994. Water quality trends and the influence of salinity in a highly regulated estuary near Cape Town, South Africa. S. Afr. J. Sci. 90: 240–246.

    Google Scholar 

  • Harding, W. R., 1996. The phytoplankton ecology of a hypertrophic, shallow lake, with particular reference to primary production, periodicity and diversity. Unpublished Ph.D thesis, University of Cape Town, South Africa, 199 pp.

    Google Scholar 

  • Harding, W. R. & A. J. R. Quick, 1992. Management options for shallow hypertrophic lakes, with particular reference to Zeekoevlei, Cape Town. S. Afr. J. Aquat. Sc. 18: 3–19.

    Google Scholar 

  • Harris, G. P., 1980. The measurement of photosynthesis in natural populations of phytoplankton. In Morris, I. (ed.), The Physiological Ecology of Phytoplankton, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Harris, G. P., F. B. Griffiths & D. P. Thomas, 1989. Light and dark uptake and loss of 14C methodological problems with productivity measurements in oceanic waters. Hydrobiologia 173: 95–105.

    Google Scholar 

  • Hooker, E. L., N. Chow & R. Saavedra, 1993. Phytoplankton biomass and primary productivity of Lake Masaya (Nicaragua). Proc. Int. Assoc. Theoret. Appl. Limnol. 25: 897.

    Google Scholar 

  • Imberger, J., 1985. Thermal characteristics of standing waters: an illustration of dynamic processes. Hydrobiologia 125: 7–29.

    Google Scholar 

  • Jewson, D. H., 1976. The interaction of components controlling net phytoplankton photosynthesis in a well-mixed lake (Lough Neagh, Northern Ireland). Freshwat. Biol. 6: 551–576.

    Google Scholar 

  • Khondker, M., 1995. Limnological research in Bangladesh. In Gopal, B. & R. G. Wetzel (eds), Limnology in Developing Countries. Int. Assoc. Limnol.: 105–120.

  • Kim, D-S & Y. Watanabe, 1993. The effect of long wave ultraviolet radiation (UV-A) on the photosynthetic activity of natural populations of freshwater phytoplankton. Ecol. Res. 8: 225–234.

    Google Scholar 

  • Kirk, J. T. O., 1983. Light and photosynthesis in aquatic ecosystems. Cambridge University Press, 203 pp.

  • Le Gourieres, D., 1982. Wind Power Plants: Theory and Design. Pergamon Press.

  • Marra, J., 1978. Phytoplankton photosynthetic response to vertical movement in a mixed layer. Mar. Biol. 46: 203–208.

    Google Scholar 

  • Marra, J., 1980. Vertical mixing and primary production. In Falkowski, P. G. (ed.), Primary Production in the Sea, Plenum Press, London: 121–137.

    Google Scholar 

  • Melack, J. M., 1982. Photosynthetic activity and respiration in an equatorial African soda lake. Freshwat. Biol. 12: 381–400.

    Google Scholar 

  • Melack, J.M & P. Kilham, 1974. Photosynthetic rates of phytoplankton in East African alkaline, saline lakes. Limnol. Oceanogr. 12: 171–185.

    Google Scholar 

  • Morel, A., 1978. (cited in Roos, 1992). Available, usable and stored radiant energy in relation to marine photosynthesis. Deep-Sea Res. 25: 673–688.

    Google Scholar 

  • Mugidde, R., 1993. The increase in phytoplankton primary productivity and biomass in Lake Victoria (Uganda). Proc. Int. Assoc. Theoret. Appl. Limnol. 25: 846–849.

    Google Scholar 

  • Mukankomeje, R, P-D. Plisnier, J-P. Descy & L. Massaut, 1993. Lake Muzahi, Rwanda. Limnological features and phytoplankton production. Hydrobiologia 257: 107–120.

    Google Scholar 

  • NIWR (National Institute for Water Research), 1985. The limnology of Hartbeespoort Dam. South African National Scientific Programmes Report 110. Foundation for Research Development, Council for Scientific and Industrial Research. Pretoria. 269 pp.

    Google Scholar 

  • Nixdorf, B., 1982. Die Sichttiefe als mein Maß zur Charakteriseierung der Vertikalverteilung der Primärproduktion im Müggelsee. Acta Hydrophysica 27: 223–228.

    Google Scholar 

  • Osborne, P. L., 1991. Seasonality in nutrients and phytoplankton production in two shallow lakes: Waigani Lake, Papua, New Guinea, and Barton Broad, Norfolk, England. Int. Rev. ges. Hydrobiol. 76: 105–200.

    Google Scholar 

  • Pierson, D. C., W. Colom & M. A. Rodrigo, 1994. The influence of photoinhibition and algal size on vertical variations in chlorophyll-a specific photosynthesis. Arch. Hydrobiol. 129: 293–309.

    Google Scholar 

  • Poole, H. H. & W.R.G. Atkins, 1929. Photoelectric measurement of submarine illumination throughout the year. J. Mar. Biol. Assoc. (UK) 16: 297–324.

    Google Scholar 

  • Quick A. J. R. & A. R. Johansson, 1992. User assessment survey of a shallow freshwater lake, Zeekoevlei, Cape Town, with particular emphasis on water quality. Water SA 18: 247–254.

    Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of the Freshwater Phytoplankton. Cambridge University Press. 410 pp.

  • Reynolds, C. S., 1993. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249: 157–172.

    Google Scholar 

  • Reynolds, C. S., 1994. The long, the short and the stalled: on the attributes of phytoplankton selected by physical mixing in lakes and rivers. Hydrobiologia 289: 9–21.

    Google Scholar 

  • Reynolds, C. S., S. W. Wiseman, B. M. Godfrey & C. Butterworth, 1983. Some effects of artificial mixing on the dynamics of phytoplankton populations in large limnetic enclosures. J. Plankt. Res. 5: 203–234.

    Google Scholar 

  • Robarts, R. D., 1979. Underwater light penetration, chlorophyll-a and primary production in a tropical African lake (Lake McIlwaine, Rhodesia). Arch. Hydrobiol. 86: 423–444.

    Google Scholar 

  • Robarts, R. D. & T. Zohary, 1987. Temperature effects on photosynthetic capacity, respiration and growth rates of bloom-forming cyanobacteria. New Zealand J.Mar. Freshwat. Res. 21: 391–399.

    Google Scholar 

  • Robarts, R. D.,M. S. Evans & M. T. Arts, 1992. Light, nutrients and water temperature as determinants of phytoplankton production in two saline prairie lakes with high sulphate concentrations. Can. J. Fish. Aquat. Sci. 49: 2281–2290.

    Google Scholar 

  • Roos, J. C., 1992. Primary productivity of theVaal River phytoplankton. Ph.D. thesis, University of the Orange Free State, Bloemfontein, South Africa, 265 pp.

    Google Scholar 

  • Scott, J. T.,G. E. Myer, R. Stewart & E. G. Walther, 1969. On the mechanism of Langmuir circulations and their role in epilimnion mixing. Limnol. Oceanogr. 14: 493–503.

    Google Scholar 

  • Shapiro, J., 1990. Current beliefs regarding dominance by blue-greens: The case for the importance of CO and pH. Proc. Int. Assoc. Theoret. Appl. Limnol. 24: 38–54.

    Google Scholar 

  • Silva, E. I. L. & R. W. Gavies, 1987. The seasonality of monsoonal primary productivity in Sri Lanka. Hydrobiologia 150: 165–175.

    Google Scholar 

  • Smith, R. A., 1980. The theoretical basis for estimating phytoplankton production and specific growth rate from chlorophyll, light and temperature data. Ecol. Modell. 10: 234–264.

    Google Scholar 

  • Smith, I. R. & I. J. Sinclair, 1972. Deep water waves in lakes. Freshwat. Biol. 2: 387–399.

    Google Scholar 

  • Sommer, U., 1993. Disturbance-diversity relationships in two lakes of similar nutrient chemistry but contrasting disturbance regimes. Hydrobiologia 249: 59–66.

    Google Scholar 

  • Standard Methods, 1989. Standard methods for the examination of water and wastewater (17th edn). American Public Health Association, Washington DC. Various pagination.

    Google Scholar 

  • Takamura, N, T. Iwakurna & M. Yosuno, 1985. Photosynthesis and primary production of Microcystis aeruginosaKütz. in Lake Kasumigaura. J. Plankt. Res. 7: 303–312.

    Google Scholar 

  • Talling, J. F., 1957. Photosynthetic characteristics of some freshwater plamkton diatoms in relation to underwater radiation. New Phytologist 56: 29–50.

    Google Scholar 

  • Talling, J. F., 1965. The photosynthetic activity of phytoplankton in East African Lakes. Int. Rev. ges. Hydrobiol. 50: 1–32.

    Google Scholar 

  • Talling, J. F., 1966. Photosynthetic behaviour in stratified and unstratified populations of a planktonic diatom. J. Ecol. 54: 99–127.

    Google Scholar 

  • Talling, J. F., R. B. Wood, M. V. Prosser & R. M. Baxter, 1973. The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes. Freshwat. Biol. 3: 53–76.

    Google Scholar 

  • Tilzer, M., 1986. The productivity of phytoplankton and its control by resource availability. A review. In Kumar, H. D. (ed.), Phycotalk. Banaras Hindi University, Varanasi, India, 72 pp.

    Google Scholar 

  • Trifonova, I., 1993. Seasonal succession of phytoplankton and its diversity in two highly eutrophic lakes with different conditions of stratification. Hydrobiologia 249: 93–100.

    Google Scholar 

  • Vant, W. N. & R. J. Davies-Colley, 1984. Factors affecting clarity of New Zealand lakes. New Zealand J. Mar. Freshwat. Res. 18: 367–377.

    Google Scholar 

  • Vollenweider, R. A., 1974. A Manual on methods for measuring primary production in aquatic environments. Int Biol. Programme Handbook 12, Blackwell Scientific Publications, 225 pp.

  • Wetzel, R. G., 1983. Limnology (2nd edn). Saunders College Publishing, Philadelphia, 762 pp.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1979. Limnological Analyses. W. B. Saunders Publishers, Philadelphia, 357 pp.

    Google Scholar 

  • Yacobi, Y. Z. & U. Polllngher, 1993. Phytoplankton composition and activity: Response to fluctuations in lake volume and turbulence. Proc. Int. Assoc. Theoret. Appl. Limnol. 25: 796–799.

    Google Scholar 

  • Yin, C., Z. Lan & M. Zhao, 1994. Factors limiting algal growth in eutrophic Chaohu Lake, China. Communicat. Int.Assoc. Theoret. Appl. Limnol. 24: 213–218.

    Google Scholar 

  • Zohary, T., A. M. Pais-Madeira, R. Robarts & K. D. Hambright, 1996. Interannual phytoplankton dynamics of a hypertrophic African lake. Arch. Hydrobiol. 136: 105–126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harding, W.R. Phytoplankton primary production in a shallow, well- mixed, hypertrophic South African lake. Hydrobiologia 344, 87–102 (1997). https://doi.org/10.1023/A:1002954311328

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002954311328

Keywords

Navigation