Skip to main content
Log in

Environmental and genetic regulation of flowering of tropical annual crops

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Phenology (i.e. the influence of environment on ontogeny) is the most important single factor influencing crop adaptation. The timing of flowering is particularly important since it largely determines when annual cereal, pulse and oilseed crops will subsequently be ripe for harvest. Two environmental factors are of overriding importance in the induction of flowering – photoperiod (daylength) and temperature. In seeking to predict times from sowing to flowering, f, it has proved profitable to analyse photothermal responses in terms of the rate of progress from sowing to flowering, 1/f. This paper summarises the advantages of a model based on rates rather than the traditional approach based on f. Over a wide range of photothermal regimes, the model involves just six coefficients, all of which (and their derivatives) have clearly defined biological meaning. Of paramount importance too is that the coefficients are not affected by the environment; they are genetic characters which determine phenotypic responses to the environment in a quantitative and predictable way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Collinson, S.T., R.J. Summerfield, R.H. Ellis & E.H. Roberts, 1992. Durations of the photoperiod-sensitive and photoperiod-insensitive phases of development to flowering in four cultivars of rice (Oryza sativa L.). Ann Bot 70: 339–346.

    Google Scholar 

  • Collinson, S.T., R.J. Summerfield, R.H. Ellis & E.H. Roberts, 1993. Durations of the photoperiod-sensitive and photoperiod-insensitive phases of development to flowering in four cultivars of soyabean (Glycine max (L.) Merrill). Ann Bot 71: 389–394.

    Article  Google Scholar 

  • Craufurd, P.Q., R.J. Summerfield, R.H. Ellis & E.H. Roberts, 1996. Photoperiod, temperature and the growth and development of cowpea (Vigna unguiculata). Expl Agric 32: 29–640.

    Google Scholar 

  • Curtis, B.C., 1988. The potential for expanding wheat production in marginal tropical environments. In: A.R. Klatt (Ed.), Wheat Production Constraints in Tropical Environments, pp. 3–11. CIM-MYT, Mexico.

    Google Scholar 

  • Ellis, R.H., S.T. Collinson, D. Hudson & W.M. Patefield, 1992. The analysis of reciprocal transfer experiments to estimate the durations of the photoperiod-sensitive and photoperiod-insensitive phases of plant development: an example in soyabean. Ann Bot 70: 87–92.

    Google Scholar 

  • Ellis, R.H., R.J. Lawn, R.J. Summerfield, A. Qi, E.H. Roberts, P.M. Chay, J.B. Brouwer, J.L. Rose & S.J. Yeates, 1994a. Towards the reliable prediction of time to flowering in six annual crops. III. Cowpea (Vigna unguiculata). Exp Agric 30: 17–29.

    Article  Google Scholar 

  • Ellis, R.H., R.J. Lawn, R.J. Summerfield, A. Qi, E.H. Roberts, P.M. Chay, J.B. Brouwer, J.L. Rose, S.L. Yeates & S. Sandover, 1994b. Towards the reliable prediction of time to flower in six annual crops. IV. Cultivated and wild mung bean. Expl Agric 30: 31–43.

    Google Scholar 

  • Ellis, R.H., R.J. Lawn, R.J. Summerfield, A. Qi, E.H. Roberts, P.M. Chay, J.B. Brouwer, J.R. Rose, S.J. Yeates & S. Sandover, 1994c. Towards the reliable prediction of time to flowering in six annual crops. V. Chickpea (Cicer arietinum). Expl Agric 30: 271–282.

    Google Scholar 

  • Erskine, W., R.H. Ellis, R.J. Summerfield, E.H. Roberts & A. Hussain, 1990. Characterisation of responses to temperature and photoperiod for time to flowering in a world lentil collection. Theor Appl Genet 88: 193–199.

    Google Scholar 

  • Erskine, W., A. Hussain, M. Tahir, A. Bahksh, R.H. Ellis, R.J. Summerfield & E.H. Roberts, 1994. Field evaluation of a model of photothermal flowering responses in a world lentil collection. Theor Appl Genet 88: 423–428.

    Article  Google Scholar 

  • Evans, L.T. (Ed.), 1969. The Induction of Flowering. Macmillan, Melbourne, Australia.

    Google Scholar 

  • Hadley, P.H., E.H. Roberts, R.J. Summerfield & F.R. Minchin, 1983. A quantitative model of reproductive development in cowpea Vigna unguiculata (L.) Walp.) in relation to photoperiod and temperature, and implications for screening germplasm. Ann Bot 51: 531–543.

    Google Scholar 

  • Hadley, P.H., E.H. Roberts, R.J. Summerfield & F.R. Minchin, 1984. Effects of temperature and photoperiod on flowering in soyabean (Glycine max (L.) Merrill.): a quantitative model. Ann Bot 53: 669–681.

    Google Scholar 

  • Hamblin, J., 1994. Can resource capture principles assist plant breeders or are they too theoretical? In: J.L. Monteith, R.K. Scott & M.H. Unsworth (Eds.), Resource Capture by Crops, pp. 211–232. Nottingham University Press, Nottingham.

    Google Scholar 

  • Imrie, B.C. & R.J. Lawn, 1990. Time to flowering of mung bean (Vigna radiata) genotypes and their hybrids in response to photoperiod and temperature. Expl Agric 26: 307–318.

    Google Scholar 

  • Kiniry, J.R., J.T. Ritchie, R.L. Musser E.P. Flint & W.R. Iwig, 1983. The photoperiod sensitive period in maize. Agron J 75: 687–690.

    Article  Google Scholar 

  • Lawn, R.J. & B.C. Imrie, 1994. Exploiting physiological understanding in crop improvement. In: Proceedings of the 10th Australian Plant Breeding Conference, pp. 23. Gold Coast, Queensland.

  • Lawn, R.J., R.J. Summerfield, R.H. Ellis, A. Qi, E.H. Roberts, P.M. Chay, J.B. Brouwer, J.L. Rose & S.J. Yeates, 1995. Towards the reliable prediction of flowering in six annual crops. VI. Applications in crop improvement. Expl Agric 31: 89–108.

    Google Scholar 

  • Linneman, A.R. & P.Q. Craufurd, 1994. Effects of temperature and photoperiod on phenological development in three genotypes of Bambara groundnut (Vigna subterranea). Ann Bot 74: 675–681.

    Article  Google Scholar 

  • Richards, F.J., 1941. The diagrammatic representation of the physiological and other experiments designed factorially. Ann Bot 5: 249–261.

    Google Scholar 

  • Richards, R.A., 1991. Crop improvement for temperate Australia: future opportunities. Field Crops Res 26: 141–169.

    Article  Google Scholar 

  • Roberts, E.H., 1991. How do crops know when to flower? The importance of daylength and temperature. Biol Sci Rev 3: 2–7.

    Google Scholar 

  • Roberts, E.H., P. Hadley & R.J. Summerfield, 1985. Effects of temperature and photoperiod on flowering in chickpeas (Cicer arietinum L.). Ann Bot 55: 881–892.

    Google Scholar 

  • Roberts, E.H. & R.J. Summerfield, 1987. Measurement and prediction of flowering in annual crops. In: J.G. Atherton (Ed.), Manipulation of Flowering, pp. 17–50. Butterworths, London.

    Google Scholar 

  • Roberts, E.H., R.J. Summerfield, R.H. Ellis & K.A. Stewart, 1988. Photothermal time for flowering in lentils (Lens culinaris) and the analysis of potential vernalization responses. Ann Bot 61: 29–39.

    Google Scholar 

  • Roberts, E.H., R.J. Summerfield, R.H. Ellis & A. Qi, 1993. Adaptation of flowering in crops to climate. Outlook Agric 22: 105–110.

    Google Scholar 

  • Summerfield, R.J., E.H. Roberts, W. Erskine & R.H. Ellis, 1985. Effects of temperature and photoperiod on flowering in lentils (Lens culinaris Medic). Ann Bot 56: 659–671.

    Google Scholar 

  • Summerfield, R.J., E.H. Roberts, R.H. Ellis & R.J. Lawn, 1991. Towards the reliable prediction of time to flowering in six annual crops. I. The development of simple models for fluctuating field environments. Expl Agric 27: 11–31.

    Google Scholar 

  • Summerfield, R.J., S.T. Collinson, R.H. Ellis, E.H. Roberts & F.W.T. Penning de Vries, 1992. Photothermal responses of flowering in rice (Oryza sativa). Ann Bot 69: 101–112.

    Google Scholar 

  • Summerfield, R.J., R.J. Lawn, A. Qi, R.H. Ellis, E.H. Roberts, M.W. Chay, J.B. Brouwer, J.L. Rose, S. Shanmugasundaram, S.J. Yeates & S. Sandover, 1993. Towards the reliable prediction of time to flowering in six annual crops. II. Soyabean (Glycine max). Expl Agric 29: 253–289.

    Google Scholar 

  • Upadhyay, A.P., R.H. Ellis, R.J. Summerfield, E.H. Roberts & A. Qi, 1994a. Characterization of photothermal flowering responses in maturity isolines of soyabean (Glycine max (L.) Merrill) cv. Clark. Ann Bot 74: 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay, A.P., R.J. Summerfield, R.H. Ellis, E.H. Roberts & A. Qi, 1994b. Variations in the durations of the photoperiod-sensitive and photoperiod-insensitive phases of development to flowering among eight maturity isolines of soyabean (Glycine max (L.) Merrill). Ann Bot 74: 97–101.

    Article  CAS  PubMed  Google Scholar 

  • Watkinson, A.R., R.J. Lawn, R.H. Ellis, A. Qi & R.J. Summerfield, 1994. RoDMoD: A computer program for characterising genotypic variation in flowering responses to photoperiod and temperature. CSIRO Technical Manual, pp. 49 with diskette. Brisbane, Australia.

    Google Scholar 

  • Wilkerson, C.G., J.W. Jones, K.J. Boote & G.S. Buol, 1989. Photoperiodically sensitive interval in time to flower of soyabean. Crop Sci 29: 721–726.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Summerfield, R., Ellis, R., Craufurd, P. et al. Environmental and genetic regulation of flowering of tropical annual crops. Euphytica 96, 83–91 (1997). https://doi.org/10.1023/A:1002944802079

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002944802079

Navigation