Advertisement

Euphytica

, Volume 93, Issue 1, pp 107–112 | Cite as

Lessons for breeders from land races of lentil

  • W. Erskine
Article

Abstract

Using the ancient, but under-researched, lentil (Lens culinaris Medikus) as an example, the paper charts the spread of the crop from its origins in the Near East arc to its current distribution and reviews the patterns of variation found in its land races to draw lessons for crop improvement. Geographic differentiation of land races is known for sensitivity to temperature and photoperiod in flowering response, base temperature for germination and for winter survival and Fe-efficiency. Collectively such factors condition the specific adaptation in lentil. Cogniscent of this pattern of adaptation, the ICARDA breeding program has decentralized into a series of separate, but finely targeted, streams integrated with national breeding programs. Within land races of lentil there is considerable heterogeneity. To provide some heterogeneity within individual lines of second-cycle genetic material, the breeding program at ICARDA for the West-Asian lowlands is producing F3or4-derived advanced generation bulk lines.

Lens culinaris lentil land races adaptation breeding method heterogeneity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barulina, H., 1930. Lentils of the USSR and other countries. Bulletin of Applied Genetics and Plant Breeding (Leningrad), Supplement 40: 1-319 (In Russian).Google Scholar
  2. Bejiga, G., S. Tsegaye, A. Tullu & W. Erskine, 1996. Evaluation of Ethiopian landraces of lentil. Gen. Res. Crop Evol. (In press).Google Scholar
  3. Ceccarelli, S., W. Erskine, J. Hamblin & S. Grando, 1994. Genotype by environment interaction and international breeding programs. Exp. Agric. 30: 177-188.Google Scholar
  4. Cubero, J.I., 1981. Origin, taxonomy and domestication. In: C. Webb & G. Hawtin (Eds). Lentils, pp. 15-38. Commonwealth Agricultural Bureaux, Farnham, U.K.Google Scholar
  5. Ellis, R.H. & T.D. Hong, 1995. The effect of cool temperatures on the germination of lentil. In: J.D.H. Keatinge & I. Küsmenoğlu (Eds). Autumn Sowing of Lentil in the Highlands of West Asia and North Africa, pp. 95-106. Central Research Institute for Field Crops, Ankara, Turkey.Google Scholar
  6. Erskine, W., Y. Adham & L. Holly, 1989. Geographic distribution of variation in quantitative characters in a world lentil collection. Euphytica 43: 97-103.Google Scholar
  7. Erskine, W. & M.A. Choudhary, 1986. Variation between and within lentil landraces from Yemen Arab Republic. Euphytica 35: 695-700.Google Scholar
  8. Erskine, W. & F.J. Muehlbauer, 1991. Allozyme and morphological variability, outcrossing rate and core collection formation in lentil germplasm. Theor. Appl. Genet. 83: 119-125.Google Scholar
  9. Erskine, W., K. Myveci & N. Izgin, 1981. Screening a world lentil collection for cold tolerance. LENS Newsletter 8: 5-8.Google Scholar
  10. Erskine, W., N.P. Saxena & M.C. Saxena, 1993. Iron deficiency in lentil: Yield loss and geographic distribution in a germplasm collection. Plant and Soil 15: 249-254.Google Scholar
  11. Erskine, W., A. Hussain, M. Tahir, A. Baksh, R.H. Ellis, R.J. Summerfield & E.H. Roberts, 1994. Field evaluation of a model of photothermal flowering responses in a world lentil collection. Theor. Appl. Genet. 88: 423-428.Google Scholar
  12. Hansen, J. & J.M. Renfrew, 1978. Palaeolithic-Neolithic seed remains at Franchthi cave, Greece. Nature 71: 349-352.Google Scholar
  13. Helbaek, H., 1969. Plant collecting, dry-farming and irrigation agriculture in prehistoric Deh Luran. In: F. Hole, K.V. Flannery & J.A. Neely (Eds). Prehistory and human ecology of the Deh Luran Plain, pp. 383-426. Memoirs Museum Anthropology No. 1. University of Michigan, Ann Arbor, USA.Google Scholar
  14. ICARDA, 1995. Annual report for 1994 of the germplasm program: Legumes. International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria.Google Scholar
  15. Ladizinsky, G., 1979. The origin of lentil and its wild genepool. Euphytica 28: 179-187.Google Scholar
  16. Smithson, J.B. & J.M. Lenné, 1996. Varietal mixtures: a viable strategy for sustainable productivity in subsistence agriculture. Ann. Appl. Biol. (In press).Google Scholar
  17. Skibinski, D.O.F., D. Rasool & W. Erskine, 1984. Aspartate aminotransferase allozyme variation in a germplasm collection of the domesticated lentil (Lens culinaris). Theor. Appl. Genet. 68: 441-448.Google Scholar
  18. Solh, M. & W. Erskine, 1981. Genetic Resources. In: C. Webb & G.C. Hawtin (Eds). pp. 54-67. Commonwealth Agricultural Bureaux, Slough, U.K.Google Scholar
  19. Zohary, D., 1972. The wild progenitor and place of origin of the cultivated lentil Lens culinaris. Econ. Bot. 26: 326-332.Google Scholar
  20. Zohary, D., 1992. Domestication of the Neolithic Near Eastern crop assemblage. In: Préhistoire de l'agriculture: Nouvelle approaches expérimentales et ethnographiques, pp. 81-86. Monographie du CRA No. 6, CNRS, Paris.Google Scholar
  21. Zohary, D. & M. Hopf, 1988. Domestication of Plants in the Old World. Clarendon Press, Oxford, U.K.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • W. Erskine
    • 1
  1. 1.International Center for Agricultural Research in the Dry Areas (ICARDA)AleppoSyria

Personalised recommendations