, Volume 346, Issue 1–3, pp 149–154 | Cite as

Research needs for predictive multispecies tests in aquatic toxicology

  • Mark Crane


Aquatic multispecies tests are increasingly used to assess the fateand effects of pesticides in Europe. The rationale for their use,although originally based upon ecological arguments, is now morelikely to be based upon uncertainties surrounding the true exposure of organisms in natural ecosystems. This shift inrationale promotes the design of more focused studies, but does notovercome difficulties associated with the extrapolation of mesocosmand microcosm results to natural systems. Priorities for furtherresearch into these systems should be the extent to which resultscan be repeated and reproduced, and the level of precision andaccuracy of predictions from microcosms and mesocosms to naturalecosystems.

mesocosm repeatability reproducibility prediction ecological risk assessment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AEDG. 1992. Improving Aquatic Risk Assessment under FIFRA. Report of the Aquatic Effects Dialogue Group. RESOLVE, World Wildlife Fund, Washington, D.C.Google Scholar
  2. Brezonik, P. L., L. A. Baker, J. R. Eaton, T. M. Frost, P. Garrison, T. K. Kratz, J. J. Magnuson, J. A. Perry, W. J. Rose, B. K. Shepard, W. A. Swenson, C. J. Watras & K. W. Webster, 1987. Artificial acidification of Little Rock Lake, Wisconsin. Wat. Air Soil Pollut. 31: 115–122.Google Scholar
  3. Cairns, J., Jr., 1986. The myth of the most sensitive species. Bioscience 36: 670–672.Google Scholar
  4. Cairns, J., Jr., 1991. Improving environmental protection. In Shastree, N. K. (ed.), Current Trends in Limnology 1, Narendra Publishing House, India: 1–12.Google Scholar
  5. Cairns, J., Jr. & D. S. Cherry, 1993. Freshwater multispecies test systems. In Calow, P. (ed.), Handbook of Ecotoxicology Vol. 1, Blackwell Scientific Publications, Oxford: 101–116.Google Scholar
  6. Cairns, J., Jr. & B. R. Niederlehner, 1987. Problems associated with selecting the most sensitive species for toxicity testing. Hydrobiologia 16: 101–112.Google Scholar
  7. Cairns, J., Jr., P. V. McCormick & B. R. Niederlehner, 1992. Estimating ecotoxicological risk and impact using indigenous aquatic microbial communities. Hydrobiologia 237: 131–145.Google Scholar
  8. Cairns, J., Jr. & E. P. Smith, 1989. Developing a statistical support system for environmental hazard evaluation. Hydrobiologia 184: 143–151.Google Scholar
  9. Clark, J. R. & C. R. Cripe, 1993. Marine and estuarine multi-species test systems. In Calow, P. (ed.), Handbook of Ecotoxicology, Vol. 1, Blackwell Scientific Publications, Oxford: 227–247.Google Scholar
  10. Clements, W. H., D. S. Cherry & J. Cairns Jr., 1990. Macroinvertebrate community responses to copper in laboratory and field experimental steams. Arch. Envir. Contam. Toxicol. 19: 361–365.Google Scholar
  11. Cousins, S., 1987. The decline of the trophic level concept. Trends Ecol. Evol. 2: 312–316.Google Scholar
  12. Crane, M., 1995. Is there a place for ecology in ecotoxicology? SETAC News 15: 19–20.Google Scholar
  13. Crane, M. & M. C. Newman, 1996. Scientific method in environmental toxicology. Envir. Rev. 4: 112–122.Google Scholar
  14. Crane, M., P. Whitehouse, B. Lefebvre, A. Burden & K. C. Brown, 1994. Biological effects of the pesticide SAN 527 I 240 EW in freshwater ponds. Proc. BCPC 9C-6: 1313–1318.Google Scholar
  15. Crossland, N. O., 1990. The role of mesocosm studies in pesticide registration. Proc. BCPC: 499–508.Google Scholar
  16. Crossland, N. O., F. Heimbach, I. R. Hill, A. Boudou, P. Leeuwangh, P. Matthiessen & G. Persoone, 1992. Summary and Recommendations of the European Workshop on Freshwater Field Tests (EWOFFT), Potsdam, Germany, June 25–26, 1992.Google Scholar
  17. Ehrlich, P., 1989. Discussion: ecology and resource management–is ecological theory any good in practice? In Roughgarden, J., R. M. May & S. A. Levin (eds), Perspectives in Ecological Theory, Princeton University Press, Princeton, NJ: 306–318.Google Scholar
  18. Emans, H. J. B., E. J. v. d. Plassche, J. H. Canton, P. C. Okkerman & P. M. Sparenburg, 1993. Validation of some extrapolation methods used for effect assessment. Envir. Toxicol. Chem. 12: 2139–2154.Google Scholar
  19. Fagerström, T., 1987. On theory, data and mathematics in ecology. Oikos 50: 258–261.Google Scholar
  20. Fairchild, J. F., T. W. La Point, J. L. Zajicek, M. K. Nelson, F. J. Dwyer & P. A. Lovely, 1992. Population-, community-and ecosystem-level responses of aquatic mesocosms to pulsed doses of a pyrethroid insecticide. Envir. Toxicol. Chem. 11: 115–129.Google Scholar
  21. Forbes, V. E. & T. L. Forbes, 1994. Ecotoxicology in Theory and Practice. Chapman & Hall, London.Google Scholar
  22. Geckler, J. R., W. B. Horning, T. M. Neiheisel, Q. H. Pickering, E. L. Ronison & C. E. Stephan, 1976. Validity of laboratory tests for predicting copper toxicity in streams. EPA-600/3-76-116. National Technical Information Service, Springfield, VA.Google Scholar
  23. Giesy, J. P. Jr. & E. P. Odum, 1980. Microcosmology: introductory comments. In Giesy, J. P. Jr. (ed.), Microcosms in Ecological Research, United States Department of Energy, Symposium Series 52 (Conf-781101), Washington, DC: 1–13.Google Scholar
  24. Graney, R. L., 1994. Introduction and regulatory background: summary and discussion. In Graney, R. L., J. H. Kennedy & J. H. Rodgers (eds), Aquatic Mesocosm Studies in Ecological Risk Assessment, Lewis Publishers, Boca Raton: 61–68.Google Scholar
  25. Graney, R. L., J. P. Giesy Jr. & D. DiToro, 1989. Mesocosm experimental design strategies: advantages and disadvantages in ecological risk assessment. Misc. Pub. ent. Soc. Am. 75: 74–88.Google Scholar
  26. Heimbach, F., W. Pflueger & H.-T. Ratte, 1992. Use of small artificial ponds for assessment of hazards to aquatic ecosystems. Envir. Toxicol. Chem. 11: 27–34.Google Scholar
  27. Hill, I. R., 1985. Effects on non-target organisms in terrestrial and aquatic environments. In Leahey, J. P. (ed.), The Pyrethroid Insecticides, Taylor and Francis Ltd., London: 151–262.Google Scholar
  28. ISO, 1986. Precision of test methods–determination of repeatability and reproducibility for a standard test method by inter-laboratory tests (2nd ed.). ISO 5725–1986 (E). International Organisation for Standardisation, Geneva, Switzerland.Google Scholar
  29. Jenkins, D. G. & A. L. Buikema Jr, 1990. Response of a winter plankton food web to simazine. Envir. Toxicol. Chem. 9: 693–705.Google Scholar
  30. Kareiva, P., 1989. Renewing the dialogue between theory and experiments in population ecology. In Roughgarden, J., R. M. May & S. A. Levin (eds), Perspectives in Ecological Theory, Princeton University Press, Princeton, NJ: 68–88.Google Scholar
  31. Lehman, J. T., 1986. The goal of understanding in limnology. Limnol. Oceanogr. 31: 1160–1166.Google Scholar
  32. Loewengart, G. & A. W. Maki, 1985. Multispecies toxicity tests in the safety assessment of chemicals: necessity or curiosity? In Cairns, J. Jr. (ed.), Multispecies Toxicity Testing, Pergamon Press, New York: 1–12.Google Scholar
  33. McIntosh, R. P., 1987. Pluralism in ecology. Ann. Rev. Ecol. Syst. 18: 321–341.Google Scholar
  34. Medawar, P., 1967. The Art of the Soluble. Methuen, London, UK.Google Scholar
  35. Merrett, W. J., G. P. Rutt, N. S. Weatherley, S. P. Thomas & S. J. Ormerod, 1991. The response of macroinvertebrates to low pH and increased aluminium concentrations in Welsh streams: multiple episodes and chronic exposure. Arch. Hydrobiol. 121: 115–125.Google Scholar
  36. Mount, D. I., 1985. Scientific problems in using multispecies toxicity tests for regulatory purposes. In Cairns, J. Jr (ed.), Multispecies Toxicity Testing, SETAC Special Publications Series, Pergamon Press: 13–18.Google Scholar
  37. Niederlehner, B. R., K.W. Pontasch, J. R. Pratt & J. Cairns Jr., 1990. Field evaluation of predictions of environmental effects from a multispecies microcosm test. Arch. envir. Contam. Toxicol. 19: 62–71.Google Scholar
  38. Okkerman, P. C., E. J. v. d. Plassche & H. J. B. Emans, 1993. Validation of some extrapolation methods with toxicity data derived from multiple species experiments. Ecotoxicol. envir. Saf. 25: 341–359.Google Scholar
  39. Perez, K. T., G. E. Morrison, E.W. Davey, N. F. Lackie, A. E. Sopter, R. J. Blasco, D. L. Winslow, R. L. Johnson, P. G. Murphy & J. F. Heltshe, 1991. Influence of size on fate and ecological effects of kepone in physical models. Ecol. Applic. 1: 237–248.Google Scholar
  40. Peters, R. H., 1986. The role of prediction in limnology. Limnol. Oceanogr. 31: 1143–1159.Google Scholar
  41. Peters, R.H., 1990. Pathologies in limnology. Mem. Ist. ital. Idrobiol. 47: 181–217.Google Scholar
  42. Peters, R. H., 1991. A Critique for Ecology, Cambridge University, Press, Cambridge.Google Scholar
  43. Pilson, M. E. Q., 1990. Application of mesocosms for solving problems in pollution research. In C. M. Lalli (ed.) Enclosed Experimental Marine Ecosystems: A Review and Recommendations, Springer-Verlag, New York: 155–168.Google Scholar
  44. Schindler, D. W., K. H. Mills, D. L. Malley, D. L. Findley, J. A. Shearer, I. J. Davies, M. A. Turner, G. A. Linsey & D. R. Cruikshank, 1985. Long-term ecosystem stress: the effects of years of experimental acidification of a small lake. Science 228: 1395–1401.Google Scholar
  45. SETAC-Europe, 1992. Guidance Document on Testing Procedures for Pesticides in Freshwater Mesocosms. A Meeting of Experts on Guidelines for Static Field Mesocosm Tests, Monks Wood Experimental Station, Abbotts Ripton, Huntingdon, UK, July 3–4, 1991.Google Scholar
  46. SETAC-RESOLVE, 1992. Workshop Report. Workshop on Aquatic Microcosms for Ecological Assessment of Pesticides, Wintergreen, VA, October 6–11, 1991.Google Scholar
  47. Shannon, L. J., M. C. Harrass, J. D. Yount & C. T. Walbridge, 1986. A comparison of Mixed Flask Culture and standardised laboratory model ecosystem for toxicity testing. In Cairns, J. Jr. (ed.), Community Toxicity Testing, American Society for Testing and Materials (ASTM STP 920), Philadelphia, PA: 135–157.Google Scholar
  48. Shrader-Frechette, K. S. & E. D. McCoy, 1993. Method in Ecology: Strategies for Conservation. Cambridge University Press, Cambridge.Google Scholar
  49. Simberloff, D., 1980. A succession of paradigms in ecology: essentialism to materialism and probabilism. Synthèse 43: 3–39.Google Scholar
  50. Simberloff, D., 1983. Competition theory, hypothesis-testing, and other community ecological buzzwords. Am. Nat. 122: 626–635.Google Scholar
  51. Suter, G. W. II., 1993. Ecological Risk Assessment. Lewis Publishers, Boca Raton, FL.Google Scholar
  52. Taub, F. B., A. C. Kindig, L. L. Conquest & J. P. Meador, 1989. Results of interlaboratory testing of the Standardised Aquatic Microcosm protocol. In Suter II, G. W. & M. A. Lewis (eds), Aquatic Toxicology and Environmental Fate, Eleventh Volume, American Society for Testing and Materials (ASTM STP 1007), Philadelphia, PA: 368–394.Google Scholar
  53. Taub, F. B., A. C. Kindig, J. P. Meador & G. L. Swartzman, 1991. Effects of ‘seasonal succession’ and grazing on copper toxicity in aquatic microcosms. Verh. int. Ver. Limnol. 24: 2205–2214.Google Scholar
  54. Tebo, L. B., 1985. Technical considerations related to the regulatory use of multispecies toxicity tests. In Cairns, J. Jr. (ed.), Multispecies Toxicity Testing, Pergamon Press, New York: 19–26.Google Scholar
  55. Touart, L.W., 1988. Aquatic mesocosm tests to support pesticide registrations. EPA540/09-88-035. Hazard Evaluation Division Technical Guidance Document. United States Environmental Protection Agency, Washington, D.C.Google Scholar
  56. Warren, C. E. & G. E. Davis, 1971. Laboratory stream research: objectives, possibilities and constraints. Ann. Rev. Ecol. Syst. 2: 111–144.Google Scholar
  57. Weatherley, N. S., G. P. Rutt, S. P. Thomas & S. J. Ormerod, 1991. Liming acid streams: aluminium toxicity to fish in mixing zones. Wat. Air Soil Pollut. 55: 345–353.Google Scholar
  58. Webber, E. C., W. G. Deutsch, D. R. Bayne & W. C. Seesock, 1992. Ecosystem-level testing of a synthetic pyrethroid insecticide in aquatic mesocosms. Envir. Toxicol. Chem. 11: 87–105.Google Scholar
  59. Winner, R.W., H. A. Owen & M. V. Moore, 1990. Seasonal variability in the sensitivity of freshwater lentic communities to a chronic copper stress. Aquat. Toxicol. 17: 75–92.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Mark Crane
    • 1
  1. 1.Division of Biology, School of Biological Sciences, Royal HollowayUniversity of LondonEgham, SurreyUK

Personalised recommendations