Skip to main content

Genetic resources and breeding of Capsicum spp.

Abstract

Five species of Capsicum have been domesticated in the American tropics, but breeding programs have concentrated on the non-pungent cultivars of C. annuum. Studies of the consequences of human selection during and after domestication support theoretical calculations that there will be significant amounts of genetic diversity within as well as between species. Breeders have only recently begun to exploit this diversity. Multiple resistances are available to several pests and diseases, but have to be transferred from one agronomic or market type of pepper to another. Problems in selecting simultaneously for multigenic resistances and polygenic quality characters may be eased by the development of molecular markers and a molecular linkage map for Capsicum. Ploidy changes (both tetraploidy and haploidy) are relatively easy to induce in Capsicum species. Doubled haploids have proved particularly valuable in the analysis of the genetically complex basis of some resistances to pests and diseases. Barriers to interspecific gene transfer are similar to those found in other genera of Solanaceae: unilateral incompatibility, post-fertilisation abortion, and nucleo-cytoplasmic interactions leading to male sterility or other abnormalities. Information on the occurrence and effects of these barriers should be available if or when breeders need to turn to interspecific hybridisation.

This is a preview of subscription content, access via your institution.

References

  1. Bermawie, N., 1990. Isozymic variability and barriers to hybridisation between Capsicum chacoense and two purple-flowered species (C. pubescens and C. tovarii). Ph.D. Thesis, The University of Reading.

  2. Chetelat, R.T. & J.W. DeVerna, 1991. Expression of unilateral incompatibility in pollen of Lycopersicon pennellii is determined by major loci on chromosomes 1, 6 and 10. Theor Appl Genet 82: 704–712.

    Article  Google Scholar 

  3. Dumas de Vaulx, R. & E. Pochard, 1986. Parthénogenèse et androgenèse chez le piment. Rôle actuel dans les programmes de sélection. Le Sélectionneur Français 36: 1–12.

    Google Scholar 

  4. Hendy, H., E. Pochard & A. Dalmasso, 1985. Transmission héréditaire de la resistance aux nematodes Meloidogyne Chitwood (Tylenchida) portée par 2 lignées de Capsicum annuum L.: étude de descendances homozygotes issues de androgenèse. Agronomie 5: 93–100.

    Google Scholar 

  5. Johnston, S.A. & R.E. Hanneman, 1982. Manipulations of endosperm balance number overcome crossing barriers between diploid Solanum species. Science 217: 446–448.

    Google Scholar 

  6. Lefebvre, V., A. Palloix, C. Caranta & E. Pochard, 1995. Construction of an intraspecific integrated linkage map of pepper using molecular markers and doubled-haploid progenies. Genome 38: 112–121.

    CAS  Google Scholar 

  7. Lefebvre, V., A. Palloix & M. Rives, 1993. Nuclear RFLP between pepper cultivars (Capsicum annuum L.). Euphytica 71: 189–199.

    Article  Google Scholar 

  8. Loaiza-Figueroa, F., K. Ritland, J.A. Laborde Cancino & S.D. Tanksley, 1989. Patterns of genetic variation of the genus Capsicum (Solanaceae) in Mexico. Pl Syst Evol 165: 159–188.

    Article  Google Scholar 

  9. Marshall, D.R. & A.H.D. Brown, 1981. Wheat genetic resources. In: L.T. Evans & W.J. Peacock (Eds). Wheat Science — Today and Tomorrow, pp. 21–40. Cambridge University Press, Cambridge.

    Google Scholar 

  10. Molhova, E., 1977. Cytoembryologie du genre Capsicum. In: E. Pochard (Ed). Capsicum 77: Comptes rendues 3ème Congres EUCARPIA Piment, pp. 191–197. Institut Nationale de la Recherche Agronomique, Montfavet.

    Google Scholar 

  11. Onus, A.N., 1995. Unilateral incompatibility in Capsicum. Ph.D. Thesis, The University of Reading.

  12. Palloix, A., 1992. Diseases of pepper and perspectives for genetic control. Capsicum Newsletter Special Issue — Proceedings of the VIIIth EUCARPIA Meeting on Genetics and Breeding of Capsicum and Eggplant: 120–126.

  13. Pickersgill, B., 1971. Relationships between weedy and cultivated forms in some species of chili peppers (genus Capsicum). Evolution 25: 683–691.

    Article  Google Scholar 

  14. Pickersgill, B., 1989. Genetic resources of Capsicum for tropical regions. In: S.K. Green (Ed). Tomato and Pepper Production in the Tropics, pp. 1–9. Asian Vegetable Research and Development Center, Taipei.

    Google Scholar 

  15. Pickersgill, B., 1991. Cytogenetics and evolution of Capsicum L. In: T. Tsuchiya & P.K. Gupta (Eds). Chromosome Engineering in Plants: Genetics, Breeding, Evolution, Part B, pp. 139–160. Elsevier, Amsterdam.

    Google Scholar 

  16. Pochard, E., A. Palloix & A.M. Daubeze, 1986. The use of androgenetic autodiploid lines for the analysis of complex resistance systems in pepper. Paper presented at the VIth EUCARPIA Meeting on Genetics and Breeding of Capsicum and Eggplant.

  17. Poulos, J., 1994. Pepper breeding (Capsicum spp.): achievements, challenges and possibilities. Plant Breeding Abstracts 64: 143–155.

    Google Scholar 

  18. Pozo Campodonico, O., 1983. Estimates of natural cross-pollination in Serrano pepper (Capsicum annuum L.). Capsicum Newsletter 2: 113–115.

    Google Scholar 

  19. Prince, J.P., E. Pochard & S.D. Tanksley, 1993. Construction of a molecular linkage map of pepper and a comparison of synteny with tomato. Genome 36: 404–417.

    CAS  Google Scholar 

  20. Quagliotti, L., 1979. Floral biology of Capsicum and Solanum melongena. In: J.G. Hawkes, R.N. Lester & A.D. Skelding (Eds). Biology and Taxonomy of the Solanaceae, pp. 399–419. Academic Press, London.

    Google Scholar 

  21. Tanksley, S.D., 1984. High rates of cross-pollination in chile pePper. HortScience 19: 580–582.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pickersgill, B. Genetic resources and breeding of Capsicum spp.. Euphytica 96, 129–133 (1997). https://doi.org/10.1023/A:1002913228101

Download citation

  • chile pepper
  • genetic resources
  • genome mapping
  • interspecific hybridisation
  • molecular markers
  • ploidy manipulations