Skip to main content
Log in

Reaction Zones of Detonating Solid Explosives

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

The reaction zones of normal and overdriven detonation waves in a number of solid HE were studied by recording the shock–wave luminosity in chloroform placed at the end of a high–explosive (HE) charge. The data obtained have led to some conclusions on the regularities of HE decomposition in a detonation wave. Thus, in a powerful solid HE, the heterogeneity of the charge plays a decisive role in the formation of a chemical spike. In this case, the time of reaction of heterogeneous HE correlates with the Jouguet pressure rather than with the sensitivity of the HE. The experimental parameters of the chemical spike are in good agreement with calculations on an extrapolated shock adiabat of the HE. This, however, does not indicate that the fraction of the HE decomposed directly at the detonation front is small but only shows that it depends smoothly on the front parameters. In overdriven detonation waves, an increase in the overcompression pressure is accompanied by an increase in the fraction of the HE decomposed directly at the front, and with a relatively large increase in pressure, the chemical spike completely disappears. In TATB and TATB–based HE, this occurs at a pressure of 40 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. B. Zel'dovich, “Theory of detonation propagation in gas systems,” Zh. Éksp. Teor. Fiz., No. 10, 542 (1940).

  2. J. von Neumann, “Theory of detonation waves,” in: Offce of Science Research and Development, Report No. 549 (1942). 732 Loboiko and Lubyatinsky

  3. W. Döring, “Uber den detonations vorgang in gasen,” Ann. Phys., 43, No. 6, 421–436 (1943).

    Google Scholar 

  4. R. E. Duff and E. Houston, “Measurement of Chapman-Jouguet pressure and reaction zone length in a detonating high explosive,” J. Chem. Phys., 23, No. 7, 1268 (1955).

    Google Scholar 

  5. C. L. Mader and J. Kershner, “The heterogeneous explosive reaction zone,” in: Proc. of the 9th Symp. (Int.) on Detonation, Portland, Oregon, August 28-September 1 (1989).

  6. A. N. Dremin and P. F. Pokhil, “Detonation wave parameters for TNT, RDX, nitroglycerine, and nitromethane,” Dokl. Akad. Nauk SSSR, No. 5, 128 (1959).

    Google Scholar 

  7. A. N. Dremin and P. F. Pokhil, “The chemical reaction zone of TNT,” Zh. Fiz. Khim., 34, No. 11, (1960).

    Google Scholar 

  8. A. N. Dremin and K. K. Shvedov, “Determination of the Chapman-Jouguet pressure and the reaction times in the detonation waves of powerful HE,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2, (1964).

  9. B. G. Craig, “Measurements of the detonation front structure in condensed-phase explosives,” in: Proc. of the Tenth Symp. (Int.) on Combustion, Cambridge, England (1964), pp. 863–867.

  10. V. N. Zubarev, N. V. Panov, and G. S. Telegin, “Width of the stationary zone in detonation waves,” Fiz. Goreniya Vzryva, 6, No. 1, 107–112 (1970).

    Google Scholar 

  11. L. V. Al'tshuler, V. K. Ashaev, V. V. Balalaev, et al., “Detonation parameters and regimes for condensed HE,” Fiz. Goreniya Vzryva, 19, No. 4, 153–159 (1983).

    Google Scholar 

  12. V. K. Ashaev, G. S. Doronin, and V. S. Zhuchenko, “Problem of stationary detonation of charges with finite length,” Fiz. Goreniya Vzryva, 21, No. 1, 127–130 (1985).

    Google Scholar 

  13. V. K. Ashaev, A. D. Levin, and O. N. Mironov, “Optical method for measuring shock-wave parameters,” Pis'ma Éksp. Teor. Fiz., 6, No. 16, 1005–1009 (1980).

    Google Scholar 

  14. V. K. Ashaev, G. S. Doronin, and A. D. Levin, “Detonation front structure in condensed HE,” Fiz. Goreniya Vzryva, 24, No. 1, 95–99 (1988).

    Google Scholar 

  15. L. A. Gatilov, R. A. Ibragimov, and A. V. Kudashov, “Detonation wave structure in cast TNT,” Fiz. Goreniya Vzryva, 25, No. 2, 82–99 (1989).

    Google Scholar 

  16. W. L. Seitz, H. L. Stacy, and J. Wackerle, “Detonation reaction zone studies on TATB explosives,” in: Eight Symp. (Int.) on Detonation (Albuquerque, U.S.A., 1985), Vol. 3 (1995), pp. 999–1008.

    Google Scholar 

  17. D. Steinberg and H. Chau, “A new approach for studying the expansion of detonation products,” ibid, Vol. 3 (1995), pp. 1009–1012.

    Google Scholar 

  18. J. Erskine, L. Green, and C. M. Tarver, “VIZAR wave profile measurements in supra-compressed HE,” in: C. Schmidt, J. N. Johnson, and L. W. Davison, Shock Compression of Condensed Matter-1989, Elsevier, Amsterdam (1990), pp. 717–720.

    Google Scholar 

  19. A. V. Utkin and G. I. Kanel', “Decomposition kinetics of TNT and sensitized RDX in shock and detonation waves,” in: Detonation and Shock Waves, Proc. of the 8th All-Union Symp. on Combustion and Explosion (Tashkent, September 13–17, 1986), Chernogolovka (1986), pp. 50–52.

  20. A. V. Utkin, G. I. Kanel', and V. E. Fortov, “Empirical macrokinetics of decomposition of sensitized RDX in shock and detonation waves,” Fiz. Goreniya Vzryva, 25, No. 5, 115–122 (1989).

    Google Scholar 

  21. A. V. Utkin, S. I. Malyarenko, and G. I. Kanel', “Regularities of RDX decomposition in shock and detonation waves,” in: Detonation, Proc. of the 9th All-Union Symp. on Combustion and Explosion (Suzdal', November 19–24, 1989), Chernogolovka (1989), pp. 91–94.

  22. I. M. Voskoboinikov and M. F. Gogulya, “Shock front luminosity in a liquid near the interface with a priming charge,” Khim Fiz., 3, No. 7 (1984).

  23. B. Hayes and C. M. Tarver, “Interpolation of detonation parameters from experimental particle velocity records,” in: Proc. of the 7th Int. Symp. on Detonation, Naval Surface Weapons Center, White Oak, Silver Spring, MD (1981), pp. 1029–1039.

    Google Scholar 

  24. L. V. Al'tshuler, G. S. Doronin, and V. S. Zhuchenko, “Detonation regimes and Jouguet parameters of condensed explosives,” Fiz. Goreniya Vzryva, 25, No. 2, 84–103 (1989).

    Google Scholar 

  25. S. N. Lubyatinsky and V. A. Vorobey, “Examination of the detonation wave front structure in condensed HE by a photoelectric method,” in: 5th All-Union Conf. on Detonation (Krasnoyarsk, August 5–12, 1991), Vol. 2 (1991), pp. 369–373.

  26. S. N. Lubyatinsky and V. A. Vorobey, “Study of the detonation front structure in high explosives using a photoelectric technique,” in: Proc. of the 2nd Intern. Symp. on Intense Loading and Its Effects, Chengdu, China (1992).

    Google Scholar 

  27. S. N. Lubyatinsky and B. G. Loboiko, “Examination of the chemical reaction zone structure in detonating HE by a photoelectric method,” in: Symp. on Technology of Energy Materials (Plezanton, CA, May 18–26, 1994) (1994).

  28. S. N. Lubyatinsky and B. G. Loboiko, “Reaction zone measurements in detonating aluminized explosives,” in: Proc. of the 1995 APS Topical Conf. on Shock Compression of Condensed Matter (Seattle, Washington, U.S.A., August 13–18, 1995) (1995), pp. 779–782.

  29. S. N. Lubyatinsky and B. G. Loboiko, “Density effect on detonation reaction zone length in solid explosives,” in: Proc. of the 1997 APS Topical Conf. on Shock Compression of Condensed Matter (Amherst, Reaction Zones of Detonating Solid Explosives 733 Massachusetts, U.S.A., July 27-August 1, 1997) (1997).

  30. S. N. Lubyatinsky and B. G. Loboiko, “Detonation reaction zones of solid explosives,” in: Proc. of the 12th (Int.) Detonation Symp., Snowmass, Colorado, U.S.A. (1998).

  31. M. F. Gogulya and A. Yu. Dobrolyubov, “Indication method for studying shock and detonation waves,” Khim Fiz., 13, No. 12, 118–127 (1994).

    Google Scholar 

  32. F. C. Gibson, M. L. Bowser, and C. R. Summers et al., “Use of an electro-optical method to determine detonation temperatures in high explosives,” J. Appl. Phys., 29, 628–632 (1958).

    Google Scholar 

  33. I. M. Voskoboinikov, M. F. Gogulya, N. F. Voskoboinikova, and B. E. Gel'fand, “Possible scheme of describing shock-wave compression of porous samples,” Dokl. Akad. Nauk SSSR, 236, No. 1, 75–78 (1977).

    Google Scholar 

  34. I. M. Voskoboinikov, V. M. Bogomolov, A. N. Afanasenkov, and V. N. Shevelev, “Determination of the temperatures of organic materials in shock waves,” Dokl. Akad. Nauk SSSR, 182, 807–810 (1968).

    Google Scholar 

  35. M. Van Thiel, A. S. Kusubov, and A. C. Mitchell (eds.), Compendium of Shock Wave Data, Lawrence Radiation Laboratory, University of California, Livermore (1977).

    Google Scholar 

  36. LASL Shock Hugoniot Data, Univ. of California Press, Berkeley-Los Angeles-London (1980).

  37. T. R. Gibbs and A. Popolato (eds.), LASL Explosive Property Data, Univ. of California Press, Berkeley-Los Angeles-London (1980).

    Google Scholar 

  38. V. S. Ilyukhin, P. F. Pokhil, O. K. Rozanov, and N. S. Shvedova, “Measurement of shock adiabats of cast TNT, crystalline RDX, and nitromethane,” Dokl. Akad. Nauk SSSR, No. 131, 793 (1960).

    Google Scholar 

  39. E. V. Shorokhov and B. V. Livanov, “Shock compressibility of TATB-based explosive compositions in the pressure range from 0.1 to 40 GPa,” Khim Fiz., 12, No. 5, 722–723 (1993).

    Google Scholar 

  40. C. M. Tarver, L. E. Fried, A. J. Ruggiero, and D. F. Calef, “Energy transfer in solid explosives,” in: Proc. of the Tenth Int. Detonation Symp., Boston, Massachusetts, July 12–16 (1993), pp. 3–10.

  41. L. G. Green, C. M. Tarver, and D. J. Erskine, “Reaction zone structure in supracompressed detonating explosives,” in: Proc. of the 9th Symp. (Int.) on Detonation, Portland, Oregon, August 27-September 1 (1989).

  42. R. L. Gustavsen, S. A. Sheffield, and R. R. Alkon, “Detonation wave profiles in HMX based explosives,” in: Proc. of the 1997 Topical Conf. on Shock Compression of Condensed Matter, Amherst, Massachusetts, U.S.A., July 27-August 1 (1997).

  43. C. M. Tarver, S. K. Chidester, and A. L. Nichols, “Critical conditions for impact-and shock-induced hot spots in solid explosives,” J. Phys. Chem., 100, No. 14, 5794–5799 (1996).

    Google Scholar 

  44. A. N. Dremin, “Chemical changes of molecular condensed HE during their compression at the shock front of a detonation wave,” Khim. Fiz., 16, No. 9, 113–118 (1997).

    Google Scholar 

  45. E. L. Lee and C. M. Tarver, “Phenomenological model of shock initiation in heterogeneous explosives,” Phys. Fluids, 23, No. 12, 2362–2372 (1980).

    Google Scholar 

  46. A. N. Dremin, S. D. Savrov, V. S. Trofimov, and K. K. Shvedov (eds.), Detonation Waves in Condensed Media [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  47. C. M. Tarver, R. D. Breithaupt, and J. W. Kury, “Detonation waves in pentaerythritol tetranitrate,” J. Appl. Phys., 81, 7193 (1997).

    Google Scholar 

  48. J. N. Kineke and C. E. West, “Shocked states of four overdriven explosives,” it: Proc. of the 5th Symp. (Int.) on Detonation, Pasadena (1970). pp. 394–402.

  49. C. Mader, Numerical Modeling of Detonations, Univ. of California Press, Berkeley-Los Angeles-London (1979).

    Google Scholar 

  50. S. M. Bakhrakh, A. A. Evstigneev, V. N. Zubarev, and A. A. Shanin, “Effect of the final rate of HE decomposition on the determination of detonation parameters,” Fiz. Goreniya Vzryva, 17, No. 6, 117–121 (1981).

    Google Scholar 

  51. D. C. Swift and B. D. Lambourn, “A Review of developments in the W-B-L detonation model,” in: Proc. of the Tenth Int. Detonation Symp. (Boston, Massachusetts, July 12–16, 1993) (1993), pp. 386–393.

  52. W. W. Wood and J. G. Kirkwood, “Diameter effects in condensed explosives. The relation between velocity and radius of curvature of the detonation wave,” J. Chem. Phys., 22, 1920 (1954).

    Google Scholar 

  53. A. W. Campbell and R. Engelke, “The diameter effect in high-density heterogeneous explosives,” in: Proc. of the Sixth Symp. (Int). on Detonation (San Diego, California, August 24–27, 1976) (1976), pp. 161–171.

  54. J. N. Johnson, P. K. Tang, and C. A. Forest, “Shockwave initiation of heterogeneous reactive solids,” J. Appl. Phys., 57, No. 9, 4323–4334 (1985).

    Google Scholar 

  55. S. A. Sheffield, D. D. Bloomquist, and C. M. Tarver, “Subnanosecond measurements of detonation fronts in solid high explosives,” J. Chem. Phys., 80, No. 8, 3831–3844 (1984).

    Google Scholar 

  56. A. V. Fedorov, A. V. Menshikh, and N. B. Yagodin, “On detonation wave front structure of condensed high explosives,” in: Proc. of the 1997 Topical Conf. on Shock Compression of Condensed Matter, Amherst, Massachusetts, U.S.A., July 27-August 1 (1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loboiko, B.G., Lubyatinsky, S.N. Reaction Zones of Detonating Solid Explosives. Combustion, Explosion, and Shock Waves 36, 716–733 (2000). https://doi.org/10.1023/A:1002898505288

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002898505288

Keywords

Navigation