Skip to main content
Log in

Radiative Electrification of Spacecraft Construction Elements: Physical Modeling of Charge Accumulation and Neutralization

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The basic principles of physical modeling of spacecraft radiative electrification in the ionosphere and the magnetosphere are formulated. It is shown that recorded cyclograms and current pulses of discharges provide complete information on the electrophysical properties of materials. The efficiency of plasma neutralization of electro-radiative effects depends on the density of low temperature plasma and the structure of the irradiated surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Furniss, T., Space Knockout, Flight Int., 1996, vol. 150, no. 4543, pp. 26-27.

    Google Scholar 

  2. Al'pert, Ya.L., Gurevich, A.V., and Pitaevskii, L.P., Iskusstvennye sputniki v razrezhennoi plazme (Artificial Satellites in a Rarefied Plasma), Moscow: Nauka, 1964.

    Google Scholar 

  3. Shuvalov, V.A., The Near Trace Structure behind the Sphere in a Flow of Nonequilibrium Rarefied Plasma, Geomagn. Aeron., 1979, vol. 19, no. 4, p. 651.

    Google Scholar 

  4. Venikov, V.A., Teoriya podobiya i modelirovaniya (The Theory of Similarity and Modeling), Moscow: Vysshaya Shkola, 1976.

    Google Scholar 

  5. Landau, L.D. and Lifshits, E.M., Elektrodinamika sploshnykh sred, Moscow: Fizmatgiz, 1959. Translated under the title Electrodynamics of Continuous Media, Oxford: Pergamon Press, 1960.

    Google Scholar 

  6. Antonov, V.M. and Ponomarenko, A.G., Laboratornye issledovaniya effektov elektrizatsii kosmicheskikh apparatov (Laboratory Studies of the Space Vehicle Electrification Effects), Novosibirsk: Nauka, 1992.

    Google Scholar 

  7. Shuvalov, V.A., Modelirovanie vzaimodeistviya tel s ionosferoi (Modeling of the Body Interactions with the Ionosphere), Kiev: Naukova Dumka, 1995.

    Google Scholar 

  8. Boev, S.G. and Ushakov, V.Ya., Radiatsionnoe nakoplenie zaryada v tverdykh dielektrikakh i metody ego diagnostiki (Radiation Charge Accumulation in Solid Dielectrics and Methods of Its Diagnostics), Moscow: Energoatomizdat, 1991.

    Google Scholar 

  9. Akishin, A.I., Emission Processes under an Electric Breakdown of Radiation-Charged Dielectrics, Fiz. Khim. Obrab. Mater., 1998, no. 5, p. 27.

  10. Yagushkin, N.I., Grafodatskii, O.S., Islyaev, Sh.A., et al., Radiation-Electrical Phenomena in Space Vehicle Dielectric Materials under an Electrification, Issled. Geomagn. Aeron. Fiz. Solntsa, 1989, no. 86, p. 131.

  11. Kivenko, E.B., Sergeev, A.I., and Yagushkin, N.I., Influence of the Electron Drift and Emission on the Surface Potential of the Irradiated Dielectric, Izv. Vyssh. Uchebn. Zaved., Fiz., 1990, vol. 33, no. 11, p. 5.

    Google Scholar 

  12. Woods, A.J. and Wenaas, E.P., Spacecraft Discharge Electromagnetic Interference Coupling Models, J. Spacecr. Rockets, 1985, vol. 22, no. 3, pp. 265-281.

    Google Scholar 

  13. Letin, V.A., Zayavlin, V.R., and Eremin, P.A., Combined Influence of Space Factors in Thermovacuum Tests of Solar Batteries, Kosm. Issled., 1999, vol. 37, no. 3, pp. 329-331.

    Google Scholar 

  14. Jnouye, G.T., Spacecraft Charging Model, AIAA Pap., 1975, no. 75-255, p. 9.

  15. Granovskii, V.L., Elektricheskii tok v gaze (Electric Current in a Gas), Moscow: Gostekhizdat, 1952.

    Google Scholar 

  16. Anderson, P.C. and Koons, H.C., Spacecraft Charging Anomaly on a Low-Altitude Satellite in an Aurora, J. Spacecr. Rockets, 1996, vol. 33, no. 5, p. 734.

    Google Scholar 

  17. Shuvalov, V.A., Priimak, A.I., Gubin, V.V., and Lazuchenkov, N.M., The System of Active Plasma Protection of Space Vehicles from the Electro-Radiation Impact of the Ionosphere and Magnetosphere, Kosm. Nauka Tekhnol., 1998, vol. 4, no. 4, p. 36.

    Google Scholar 

  18. Burgasov, M.P., Beznos, I.A., Grafodatskii, O.S., et al., Neutralization of the Space Vehicle Potential by Cold Plasma Flows, Issled. Geomagn. Aeron. Fiz. Solntsa, 1992, no. 87, p. 67.

  19. Shuvalov, V.A., Priimak, A.I., Gubin, V.V., and Tokmak, N.A., Neutralization of High-Voltage Charges on the Dielectric Surface by Plasma Flows and Electromagnetic Radiation Fluxes, Materialy konferentsii “Fizika plazmy i plazmennye tekhnologii FPPT-2” (Proc. Conf. on Plasma Physics and Technologies), Minsk: Inst. Mol. At. Fiz. Akad. Nauk Belarusi, 1997, p. 432.

    Google Scholar 

  20. Elektrety, Sessler, G., Ed., Heidelberg: Springer, 1980. Translated under the title Electrets, Moscow: Mir, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shuvalov, V.A., Priimak, A.I. & Gubin, V.V. Radiative Electrification of Spacecraft Construction Elements: Physical Modeling of Charge Accumulation and Neutralization. Cosmic Research 39, 15–22 (2001). https://doi.org/10.1023/A:1002879626515

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002879626515

Keywords

Navigation