Skip to main content
Log in

The Concept of Chamber Design for Explosive Thermonuclear Fusion Energetics

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

The possibility of realizing the solution of mankind's energy problem by the explosive thermonuclear fusion method that was proposed by Academician A. D. Sakharov is assessed. The essence of the method consists of the use of the energy of low–power thermonuclear explosions performed cyclically in stationary explosion–proof chambers equipped with a means for selection and utilization of the thermal energy of the explosion. Here the basic problem is to design airtight chambers capable of withstanding multiple thermonuclear explosions whose power is equal to ≈10—25 ktons of TNT. The available data on this problem are examined. The concept of designingreliable explosion–proof chambers for the solution of the indicated problem is formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. A. Ivanov, N. P. Voloshin, A. S. Ganeev, et al., Explosive Deuterium Energetics [in Russian], Inst. of Tech. Phys., Snezhinsk (1996).

    Google Scholar 

  2. S. V. Putvinskii, “Is the world power system without nuclear fusion possible?", Usp. Fiz. Nauk, 168, No. 11, 1235–1246 (1998).

    Google Scholar 

  3. A. D. Sakharov, “Nuclear power and freedom of the West,” Ekokhronika, No. 3 (1995).

  4. “13Ya facility,” Advertisement, Inst. of Exp. Phys., Sarov (1993).

  5. A. I. Abakumov, F. V. Grigor'ev, V. P. Solov'ev, et al., “Dynamics of deformation of spherical vessels under internal explosive loading,” in: Applied Problems of Strength and Plasticity. Algorithmization and Automation of the Solution of Scientific Studies (collected papers) [in Russian], Gor'kii Univ. Nizhnii Novgorod (1998), pp. 53–57.

    Google Scholar 

  6. E. F. Marwick, U.S. Patent No. 4121969, “Contained fissionly vaporized imploded fission explosive breeder reactor,” Published 10.24.78, Vol. 975, No. 4.

  7. A. G. Ivanov, “Dynamic fracture and scale effects,” Prikl. Mekh. Tekh. Fiz., 35, No. 3, 116–131 (1994).

    Google Scholar 

  8. Wessel, Pryle, Clark, “Calculations of steel constructions with large cross section by methods of fracture mechanics,” in: Yu. N. Rabotnov (ed.), New Methods of Estimating the Resistance of Metals to Brittle Fracture (collected scientific papers) [Russian translation], Mir, Moscow (1972), pp. 213–244.

    Google Scholar 

  9. N. Nakayama, M. Ohashi, T. Sano, et al., “Dynamic stress concentration factor in the strip plate with fillet,” in: J. de Physique, IV (France), 7 (1997), pp. c3–295–c.3–300.

    Google Scholar 

  10. A. G. Ivanov, V. A. Sinitsyn, and S. A. Novikov, “Scale effects upon dynamic fracture of constructions,” Dokl. Akad. Nauk SSSR, 194, No. 2, 316–319 (1970).

    Google Scholar 

  11. A. G. Ivanov, S. A. Novikov, and V. A. Sinitsyn, “Scale effect upon explosive fracture of closed steel containers,” Fiz. Goreniya Vzryva, 8, No. 1, 124–129 (1972).

    Google Scholar 

  12. A. G. Ivanov, A. A. Uchaev, V. A. Ryzhanskii, et al., “Pulse fracture of geometrically similar objects,” Dokl. Akad. Nauk SSSR, 261, No. 4, 868–871 (1981).

    Google Scholar 

  13. A. G. Ivanov, V. A. Ryzhanskii, V. V. Zhukov, et al., “Experimental study of the effect of scale on the strength of a high-pressure boiler under internal explosive loading,” Fiz. Goreniya Vzryva, 17, No. 3, 102–108 (1981).

    Google Scholar 

  14. G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  15. G. M. Boyd, in: H. Liebowitz (ed.), Fracture, Vol. 5: Fracture Design of Structures, Academic Press, New York-London (1968).

    Google Scholar 

  16. A. G. Ivanov, “Brittle strength of thin-walled vessels,” Probl. Prochn., No. 6, 49–53 (1988).

  17. A. G. Ivanov, “Integral approach to the problem of fracture,” in: High Energy Densities (collected scienti fic papers) [in Russian], Inst. of Exp. Phys., Sarov (1997).

    Google Scholar 

  18. V. A. Ryzhanskii, V. N. Mineev, A. G. Ivanov, et al., “Fracture of cylindrical glass-epoxide shells filled with water under internal pulse loading,” Mekh. Polimer., No. 2, 283–289 (1978).

    Google Scholar 

  19. A. G. Ivanov and V. I. Tsypkin, “Deformation and fracture of glass-reinforced plastic shells under extreme pulse loading,” Mekh. Kompoz. Mat., No. 3, 472–480 (1987).

    Google Scholar 

  20. A. G. Fedorenko, and M. A. Syrunin, and A. G. Ivanov, “Effect of the reinforcement structure of oriented glass-reinforced plastics on the strength of circular cylindrical shells under explosive loading from within,” Mekh. Kompoz. Mat., No. 4, 631–640 (1991).

    Google Scholar 

  21. A. G. Ivanov, “Transportable localizing container for explosive cargoes,” in: Symp. on Accident Resistant Containers and Transportation Safety, Albuquerque, NM, October 26-November 2, (1993).

  22. A. G. Ivanov, A. G. Fedorenko, and M. A. Syrunin, “The possibility of increasing the safety of nuclear weapons,” Fiz. Goreniya Vzryva, 32, No. 2, 169–171 (1995).

    Google Scholar 

  23. A. G. Fedorenko, M. A. Syrunin, and A. G. Ivanov, “Dynamic strength of spherical glass-fiber shells under internal explosive loading,” Fiz. Goreniya Vzryva, 31, No. 4, 93–99 (1995).

    Google Scholar 

  24. V. V. Panasuyk, A. E. Andreikiv, and S. E. Kovchik, Methods of Estimating Crack Resistance of Structural Materials [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  25. R. J. Weimer and H. C. Rogers, “Dynamic fracture phenomena in high-strength steels,” J. Appl. Phys., 50, No. 12, 8025–8030 (1979).

    Google Scholar 

  26. B. Gaily and J. Petit, “Inuence of the microstructure on armor steel spelling,” in: Shock Compression of Condensed Matter, Proc. of the Conf. of Amer. Phys. Soc. (Seattle, Washington, August 13–18, 1995), Part 1 (1995), pp. 635–638.

  27. F. Whipple, Orbiting the Sun, Harvard Univ. Press, Camridge (1981).

    Google Scholar 

  28. G. Kolsky and D. Rader, “Stress waves and fracture,” in: H. Liebowitz (ed.), Fracture, Vol. 1: Microscopic and Macroscopic Fundamentals, Academic Press, New York-London (1968).

    Google Scholar 

  29. A. G. Fedorenko, V. I. Tsypkin, M. A. Syrunin, et al., “Behavior of composite shells with a high-elastic binder under internal pulse loading,” Mekh. Kompoz. Mat., No. 2, 306–314 (1988).

  30. V. A. Ryzhanskii, A. G. Ivanov, V. V. Zhukov, et al., “Explosion safety of the cylindrical part of the vessel of a fast reactor,” Atom. Énerg., 79, No. 3, 178–188 (1995).

    Google Scholar 

  31. V. Z. Parton, Fracture Mechanics. From Theory to Practice [in Russian], Nauka, Moscow (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, A.G., Syrunin, M.A., Fedorenko, A.G. et al. The Concept of Chamber Design for Explosive Thermonuclear Fusion Energetics. Combustion, Explosion, and Shock Waves 36, 832–839 (2000). https://doi.org/10.1023/A:1002875327578

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002875327578

Keywords

Navigation