Biologia Plantarum

, Volume 43, Issue 4, pp 491–500 | Cite as

Nitrogen Containing Compounds and Adaptation of Plants to Salinity Stress

  • M.M.F. Mansour


A number of nitrogen containing compounds (NCC) accumulate in plants exposed to salinity stress. The most frequently accumulating NCC include amino acids, amids, imino acids, proteins, quarternary ammonium compounds (QAC) and polyamines. The specific NCC that accumulate in saline environment vary with the plant species. Osmotic adjustment, protection of cellular macromolecules, storage form of nitrogen, maintaining cellular pH, detoxification of the cells, and scavenging of free radicals are proposed functions for these compounds under stress conditions. NCC accumulation is usually correlated with plant salt tolerance, even though this correlation is based on untested hypotheses.

amides imino acids polyamines proline proteins quaternary ammonium compounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, G., Srivastava, P.S., Iqbal, M.: Proline accumulation, protein pattern and photosynthesis in regenerants grown under NaCl stress.-Biol. Plant. 42: 89-95, 1999.Google Scholar
  2. Amonkar, D.V., Karmarkar, S.M.: Nitrogen uptake and assimilation in halophytes.-In: Srivastava, H.S., Singh, R.P. (ed.): Nitrogen Nutrition in Higher Plants. Pp. 431-445. Associated Publ. Co., New Delhi 1995.Google Scholar
  3. Amzallag, G.N.: Tolerance to salinity in plants: new concepts for old problems.-In: Jaiwal, P.K., Singh, R.P., Gulati, A. (ed.): Strategies for Improving Salt Tolerance in Higher Plants. Pp. 1-24. Oxford and IBH Publ. Co., New Delhi 1997.Google Scholar
  4. Ashraf, M.: The effect of NaCl on water relations, chlorophyll, protein and proline contents of two cultivars of blackgram (Vigna mungo L.).-Plant Soil 119: 205-211, 1989.Google Scholar
  5. Ashraf, M.: Breeding for salinity tolerance in plants.-Crit. Rev. Plant Sci. 13: 17-42, 1994.Google Scholar
  6. Ashraf, M.: Improvement of salt tolerance in some native pulse crops.-In: Jaiwal, P.K., Singh, R.P., Gulati, A., (ed.): Strategies for Improving Salt Tolerance in Higher Plants. Pp. 413-433. Oxford and IBH Publ. Co., New Delhi 1997.Google Scholar
  7. Basu, R., Maitra, N., Ghosh, B.: Salinity results in polyamine accumulation in early rice (Oryza sativa L.) seedlings.-Aust. J. Plant Physiol. 15: 777-786, 1988.Google Scholar
  8. Becker, T.W., Fock, H.P.: The activity of nitrate reductase and the pool size of some amino acids and some sugars in water-stresses maize leaves.-Photosynth. Res. 8: 267-274, 1986.Google Scholar
  9. Ben-Zioni, A., Itai, C., Vaadia, Y.: Water and salt stress, kinetin and protein synthesis in tobacco leaves.-Plant Physiol. 42: 361-368, 1967.Google Scholar
  10. Coughlan, S.J., Heber, U.: The role of glycinebetaine in the protection of spinach thylakoids against freezing stress.-Planta 156: 62-69, 1982.Google Scholar
  11. Davies, W.J., Van Volkenburgh, E.: The influence of water deficit on the factors controlling the daily pattern of growth of Phaseolus trifoliates.-J. exp. Bot. 34: 987-999, 1983.Google Scholar
  12. Dhindsa, R.S., Cleland, R.B.: Water stress and protein synthesis.-Plant Physiol. 55: 781-788, 1975.Google Scholar
  13. DiTomaso, J.M., Shaff, J.B., Kochain, L.V.: Membrane-mediated putrescine transport and its role in stress-induced phytotoxicity.-Plant Physiol. 89(Suppl): S-147, 1989.Google Scholar
  14. Drolet, G., Dumbroff, B.G., Legge, R.L., Thompson, J.E.: Radical scavenging properties of polyamines.-Phytochemistry 35: 367-371, 1986.Google Scholar
  15. Dubey, R.S.: Nitrogen metabolism in plants under salt stress.-In: Jaiwal, P.K., Singh, R.P., Gulati, A. (ed.): Strategies for Improving Salt Tolerance in Higher Plants. Pp. 129-158. Oxford and IBH Publ. Co., New Delhi 1997.Google Scholar
  16. Dubey, R.S., Pessarakli, M.: Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions.-In: Pessarakli M. (ed.): Handbook of Plant and Crop Physiology. Pp. 605-625. Marcel Dekker, New York 1995.Google Scholar
  17. Dubey, R.S., Rani, M.: Influence of NaCl salinity on growth and metabolic status of protein and amino acids in rice seedlings.-J. Agron. Crop Sci. 162: 97-106, 1995.Google Scholar
  18. Dumbroff, B.H.: Polyamine functions and relationships with ethylene and cytokinin.-In: Slocum, R.D., Flores, H.B. (ed.): Hiochemistry and Physiology of Polyamines in Plants. Pp. 256-266. CRC Press, Boca Raton 1990.Google Scholar
  19. DuPont, F.M.: Salt induced changes in ion transport: Regulation of primary pumps and secondary transporters.-In: Cooke, D.T., Clarkson, D.T. (ed.): Transport and Receptor Proteins of Plant Membranes. Pp. 91-100. Plenum Press, New York 1992.Google Scholar
  20. Evans, R.T., Malmberg, R.L.: Do polyamines have roles in plant development?-Annu. Rev. Plant Physiol. Plant mol. Biol. 40: 235-269, 1989.Google Scholar
  21. Evers, D., Overney, S., Simon, P., Greppin, H. Hausman, J.F.: Salt tolerance of Solanum tuberosum L. overexpressing an heterologous osmotin-like protein.-Biol. Plant. 42: 105-112, 1999.Google Scholar
  22. Fallon, K.M., Phillips, R.: Responses to water stress in adapted carrot cell suspension cultures.-J. exp. Bot. 40: 681-687, 1989.Google Scholar
  23. Fathi-Ettai, R.A., Prat, D.: Variation in organic and mineral components in young seedlings under stress.-Physiol. Plant. 79: 479-486, 1990.Google Scholar
  24. Flores, H.E.: Polyamines and plant stress.-In: Alscher, R.G., Cumming, J.R. (ed.): Responses in Plants: Adaptation and Acclimation Mechanism. Pp. 217-239. Wiley-Liss, New York 1990.Google Scholar
  25. Flores, H.E., Filner, P.: Metabolic relationships of putrescine, GABA and alkaloids in cell and root cultures of Solanaceae.-In: Neuman, K., Barz, W., Reinhard, E. (ed.): Primary and Secondary Metabolism of Plant Cell Cultures. Pp. 174-185. Springer-Verlag, Berlin 1985.Google Scholar
  26. Ford, C.W.: Accumulation of low molecular weight solutes in water-stressed tropical legumes.-Phytochemistry 23: 1007-1015, 1984.Google Scholar
  27. Gadallah, M.A.A.: Effects of proline and glycinebetaine on Vicia faba responses to salt stress.-Biol. Plant. 42: 249-257, 1999.Google Scholar
  28. Galiba, G., Simon-Sarkadi, L., Salgo, A., Kocsy, G.: Genotype dependent adaptation of wheat varieties to water stress in vitro.-J. Plant Physiol. 134: 730-735, 1989.Google Scholar
  29. Garbarino, J., DuPont, F.M.: NaCl induces a Na+/H+ antiport in tonoplast vesicles from barley roots.-Plant Physiol. 86: 231-236, 1988.Google Scholar
  30. Genard, H., Le Saos, J., Hillard, J., Tremolieres, A., Boucaud, J.: Effect of salinity on lipid composition, glyeinebetaine content and photosynthetic activity in chloroplasts of Suaeda maritima.-Plant Physiol. Biochem. 29: 421-427, 1991.Google Scholar
  31. Glass, A.D.M., Siddiqi, M.Y.: Nitrogen absorption by plant roots.-In: Srivastava, H.S., Singh, R.H. (ed.): Nitrogen Nutrition in Higher Plants. Pp. 21-56. Associated Publ. Co., New Delhi 1995.Google Scholar
  32. Gorham, J., Hughes, L.I., Wyn Jones, R.G.: Low molecular weight carbohydrates in some salt stressed plants.-Plant Physiol. 53: 27-33, 1981.Google Scholar
  33. Gorham, J., Forster, B.P., Budrewicz, E., Wyn Jones, R.G., Miller, T.E., Law, C.N.: Salt tolerance in the Triticeae: salinity induced changes in leaf solute composition of some perennial Triticeae.-J. exp. Bot. 37: 1114-1128, 1986.Google Scholar
  34. Gorham, J., Wyn Jones, R.G., MacDonnell, E.: Some mechanisms of salt tolerance in crop plants.-Plant Soil 89: 15-40, 1985.Google Scholar
  35. Grattan, S.R., Grieve, C.M.: Mineral nutrient acquisition and response by plants grown in saline environments.-In: Pessarakli, M. (ed.): Handbook of Plant and Crop Stress. Pp. 203-226. Marcel Dekker, New York 1994.Google Scholar
  36. Griffith, S.M., Banowetz, G.M.: Nitrogen nutrition and flowering.-In: Srivastava, H.S., Singh, R.P. (ed.): Nitrogen Nutrition in Higher Plants. Pp. 385-400. Associated Publ. Co., New Delhi 1995.Google Scholar
  37. Grieve, C.M., Maas, E.M.: Betaine accumulation in salt stressed sorghum.-Physiol. Plant. 61: 167-171, 1984.Google Scholar
  38. Hanson, A.D., Burnet, M.: Evolution and metabolic engineering of osmoprotectant accumulation in higher plants.-In: Cherry, J.H. (ed.): Biochemical and Cellular Mechanisms of Stress Tolerance in Plants. Pp. 291-301. Springer-Verlag, Berlin 1994.Google Scholar
  39. Hanson, A.D., Grumet, R.: Betaine accumulation: metabolic pathways and genetics.-In: Key, J.L., Kosuge, T. (ed.): Cellular and Molecular Biology of Plant Stress. Pp. 71-92. Alan R. Liss, New York 1985.Google Scholar
  40. Hanson, A.D., Hitz, W.D.: Metabolic responses of mesophytes to plant water deficits.-Annu. Rev. Plant Physiol. 33: 162-203, 1982.Google Scholar
  41. Hanson, A.D., Ramnasabapathi, B., Rivoal, J., Burnet, M., Dillon, M.O., Gage, D.A.: Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance.-Proc. nat. Acad. Sci. USA 91: 306-310, 1994.Google Scholar
  42. Hasegawa, P.H., Bressan, R.A., Handa, A.K.: Cellular mechanisms of salinity tolerance.-Hort. Sci. 21: 1317-1324, 1986.Google Scholar
  43. Hassanein, A.M.: Alterations in protein and esterase patterns of peanut in response to salinity stress.-Biol. Plant. 42: 241-248, 1999.Google Scholar
  44. Heuer, B.: Osmoregulatory role of proline in water stressed plants.-In: Pessarakli, M. (ed.): Handbook of Plant and Crop Stress. Pp. 227-246. Marcel Dekker, New York 1994.Google Scholar
  45. Hitz, W.D., Hanson, A.D.: Determination of glycinebetaine by pyrolysis-gas chromatography in cereals and grasses.-Phytochemistry 19: 2371-2374, 1980.Google Scholar
  46. Holmstrom, K.O., Welin, B., Mandal, A., Kristiansdottir, I., Teeri, T.H., Lamark, T., Strom, A.R., Palva, F.T.: Production of the Escherichia coli betaine-aldehyde dehydrogenase, an enzyme required for the synthesis of the osmoprotectant glycinebetaine, in transgenic plants.-Plant J. 6: 749-758, 1994.Google Scholar
  47. Hurkman, W.J., Fornari, C.S., Tanaka, C.K.: A comparison of the effect of salt on polypeptides and translatable mRNAs in roots of a salt-tolerant and a salt-sensitive cultivar of barley.-Plant Physiol. 90: 1444-1456, 1989.Google Scholar
  48. Ishitani, M., Nakamura, T., Han, S.Y., Takabe, T.: Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid.-Plant mol. Biol. 99: 307-315, 1995.Google Scholar
  49. Itai, C., Paleg, L.G.: Responses of water-stressed Hordeum distichum L. and Cucumis sativus to proline and betaine.-Plant Sci. Lett. 25: 329-335, 1982.Google Scholar
  50. Itai, C., Richmond, A., Vaadia, H.: The role of root cytokinins during water and salinity stress.-Isr. J. Bot. 17: 187-195, 1968.Google Scholar
  51. Jefferies, R.L., Rudmik, T.: The responses of halophytes to salinity: an ecological perspective.-In: Staples, R.C., Toenniessen, G.H. (ed.): Salinity Tolerance in Plants. Pp. 213-227. Wiley, New York 1984.Google Scholar
  52. Jolivet, Y., Larher, F., Hamelin, J.: Osmoregulation in halophytic higher plants: the protective effect of glycinebetaine against the heat destabilization of membranes.-Plant Sci. Lett. 25: 193-201, 1982.Google Scholar
  53. Jolivet, Y., Hamelin, J., Larher, F.: Osmoregulation in halophytic higher plants: the protective effects of glycinebetaine and other related solutes against the oxalate destabilization of membranes in beet root cells.-Z. Pflanzenphysiol. 109: 171-180, 1983.Google Scholar
  54. Kabar, K.: Alleviation of salinity stress by plant growth regulators on seed germination.-J. Plant Physiol. 128: 179-183, 1987.Google Scholar
  55. Kakkar, R.R., Rai, V.R.: Polyamines under salt stress.-In: Jaiwal, P.K., Singh, R.P., Gulatia, A. (ed.): Strategies for Improving Salt Tolerance In Higher Plants. Pp. 191-203. Oxford and IBH Publ. Co., New Delhi 1997.Google Scholar
  56. Kao, C. H.: Polyamines and plant senescence.-In: Srivastava, H.S., Singh, R.P. (ed.): Nitrogen Nutrition in Higher Plants. Pp. 311-322. Associated Publ. Co., New Delhi 1995.Google Scholar
  57. Katiyer, S., Dubey, R.S.: Salinity induced accumulation of polyamines in germinating rice seeds differing in salt tolerance.-Trop. Sci. 30: 229-240, 1990.Google Scholar
  58. Kaur-Sawhney, R., Galston, G.: Interaction of polyamines and light on biochemical processes involved in leaf senescence.-Plant Cell Eviron. 2: 189-196, 1979.Google Scholar
  59. Khan, M.A., Ungar, I.A., Showalter, A.M., Dewald, H.D.: NaCl-induced accumulation of glycinebetaine in four subtropical halophytes from Pakistan.-Physiol. Plant. 102: 487-492, 1998.Google Scholar
  60. Khan, M.G., Srivastava, H.S.: Changes in growth and nitrogen assimilation in maize plants induced by NaCl and growth regulators.-Biol. Plant. 41: 93-99, 1998.Google Scholar
  61. Kishor, P.B.R., Hong, Z., Miao, G.H., Hu, C.A., Verma, D.P.B.: Overexpression of pyrroline-5-carboxylase synthetase increase proline production and confers osmotolerance in transgenic plants.-Plant Physiol. 108: 1387-1394, 1995.Google Scholar
  62. Kononowicz, A.K., Raghhothama, R.G., Casas, A.M., Nelson, D.E., Liu, D., Narasimhan, M.L., LaRose, P.C., Singh, N.K., Bressan, R.A., Hasegawa, P.M.: Structure, regulation and function of the osmotin gene.-In: Cherry, J.H. (ed.): Bichemical and Cellular Mechanisms of Stress Tolerance in Plants. Pp. 381-413. Springer-Verlag, Berlin 1994.Google Scholar
  63. Krishnamurthy, R.: Ameliorative of salinity effect in salt tolerant rice (Oryza sativa L.) by foliar application of putrescine.-Plant Cell Physiol. 32: 479-490, 1991.Google Scholar
  64. Krishnamurthy, R., Bhagawat, K.A.: Polyamines as modulators of salt tolerance in rice cultivars.-Plant Physiol. 91: 500-504, 1989.Google Scholar
  65. LaRose, P.C., Singh, N.K., Hasegawa, P.M., Bressan, P.A.: Stable NaCl tolerance of tobacco cells is associated with enhanced accumulation of osmotin.-Plant Physiol. 91: 855-861, 1989.Google Scholar
  66. Le Dily, F., Billard, J.P., Boucaud, J.: Polyamines levels in relation to growth and NaCl concentration in normal and habituated sugar beet callus cultures.-Plant Cell Environ. 14: 327-332, 1991.Google Scholar
  67. Lone, M.I., Kueh, J.S., Wyn Jones, R.G., Bright, S.W.: Influence of proline and glycinebetaine on salt tolerance of cultured barley embryos.-J. exp. Bot. 38: 479-490, 1987.Google Scholar
  68. Low, P.B.: Molecular basis of the biological compatibility of nature's osmolytes.-In: Gilles, R., Gilles-Baillien, M. (ed.): Transport Processes, Iono-and Osmoregulation. Pp. 469-477. Springer-Verlag, Berlin 1984.Google Scholar
  69. Maas, E.V., Nieman, R.H.: Physiology of plant tolerance to salinity.-In: Jung, G.A. (ed.): Crop Tolerance to Suboptimal Conditions. Pp. 277-299. Amer. Soc. Agron., Madison 1978.Google Scholar
  70. Maleka, P., Kontturi, M., Pehu, B., Somersalo, S.: Photosynthesis response of drought-and salt-stressed tomato and turnip plants to foliar-applied glycinebetaine.-Physiol. Plant. 105: 45-50, 1999.Google Scholar
  71. Mansour, M.M.F.: Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress.-Plant Physiol. Biochem. 36: 767-772, 1998.Google Scholar
  72. Mansour, M.M.F., Al-Mutawa, M.M.: Stabilization of plasma membrane by polyamines against salt stress.-Cytobios 100: 7-17, 1999.Google Scholar
  73. Mansour, M.M.F., Stadelmann, E.J., Lee-Stadelmann, O.Y.: Salt acclimation of Triticum by choline chloride: plant growth, mineral content and cell permeability.-Plant Physiol. Biochem. 31: 341-348, 1993.Google Scholar
  74. McCue, R.F., Hanson, A.D.: Drought and salt tolerance: towarde understanding and application.-TIBTECH 8: 358-362, 1990.Google Scholar
  75. Moftah, A.B., Michel, B.B.: The effect of sodium chloride on solute potential and proline accumulation in soybean leaves.-Plant Physiol. 83: 283-286, 1987.Google Scholar
  76. Munns, R., Termaat, A.: Whole plant response to salinity.-Aust. J. Plant Physiol. 13: 143-160, 1986.Google Scholar
  77. Nash, D., Paleg, L.G., Wiskich, J.T.: Effect of proline, betaine and solutes on the heat stability of mitochondrial enzymes.-Aust. J. Plant Physiol. 9: 47-57, 1982.Google Scholar
  78. Pareek, A., Singla, S.L., Grover, A.: Salt responsive proteins/genes in crop plants.-In: Jaiwal, P.K., Singh, R.P., Gulati, A. (ed.): Strategies for Improving Salt Tolerance in Higher Plants. Pp. 365-391. Oxford and IBH Publ. Co., New Delhi 1997.Google Scholar
  79. Pollard, A., Wyn Jones, R.G.: Enzyme activities in concentrated solutions of glycinebetaine and other solutes.-Planta 144: 291-298, 1979.Google Scholar
  80. Prakash, L., Prathapsanen, G.: Putrescine reduces NaCl-induced inhibition of germination and early seedling growth of rice (Oryza sativa L.).-Aust. J. Plant Physiol. 15: 761-767, 1988.Google Scholar
  81. Rabe, B.: Stress physiology: the functional significance of the accumulation of nitrogen containing compounds.-J. hort. Sci. 65: 231-243, 1990.Google Scholar
  82. Raggi, V.: Changes in free amino acids and osmotic adjustment in leaves of water-stressed bean.-Physiol. Plant. 91: 427-434, 1994.Google Scholar
  83. Rains, D.W.: Plant tissue and protoplast culture: applications to stress physiology and biochemistry.-In: Jones, H.G., Flowers, T.J., Jones, M.B. (ed.): Plants under Stresses. Biochemistry, Physiology and Ecology and their Application to Plant Improvement. Pp. 181-196. Cambridge University Press, Cambridge 1989.Google Scholar
  84. Ramagopal, S., Carr, J.B.: Sugarcane proteins and messenger RNAs regulated by salt in suspension cells.-Plant Cell Environ. 14: 47-56, 1991.Google Scholar
  85. Raymond, P., Brouquisse, R., Chevalier, C., Couee, I., Dieuaide, M., James, F., Just, D., Pradet, A.: Proteolysis and proteolytic activities in the acclimation to stress: the case of sugar starvation in maize root tips.-In: Cherry, J.H. (ed.): Biochemical and Cellular Mechanisms of Stress Tolerance in Plants. Pp. 325-334. Springer-Verlag, Berlin 1994.Google Scholar
  86. Rhodes, D.P., Rich, J., Myers, A.C., Rueter, C.C., Jamieson, G.C.: Determination of betaines by fast atom bombardment mass spectrometry: identification of glycinebetaine deficient genotypes of Zea mays.-Plant Physiol. 84: 781-788, 1987.Google Scholar
  87. Rhodes, D., Hanson, A.D.: Quaternary ammonium and tertiary sulfonium compounds in higher plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 44: 357-384, 1993.Google Scholar
  88. Roberts, R.A., Dumbroff, E.B., Thompson, J.E.: Exogenous polyamines alter membrane fluidity in bean leaves-a basis for potential misinterpretation of their true physiological role.-Planta 167: 395-401, 1986.Google Scholar
  89. Robinson, S.P., Jones, J.P.: Accumulation of glycinebetaine in chloroplasts provides osmotic adjustment during salt stress.-Aust. J. Plant Physiol. 13: 659-668, 1986.Google Scholar
  90. Roy, P., Gurjar, A.S.: Molecular biology of salt stress.-In: Jiawal, P.K., Singh, R.P., Gulati, A. (ed.): Strategies for Improving Salt Tolerance in Higher Plants. Pp. 393-402. Oxford and IBH Publ. Co., New Delhi 1997.Google Scholar
  91. Rudolph, A.S., Crowe, J.H., Crowe, L.M.: Effect of three stabilizing agents-proline, betaine and trehalose-on membrane phospholipids.-Arch. Biochem. Biophys. 245: 134-143, 1986.Google Scholar
  92. Shaddad, M.M.: The effect of proline application on the physiology of Raphanus sativus plants grown under stress.-Biol. Plant. 32: 104-112, 1990.Google Scholar
  93. Shevyakova, N.I., Roshchupkin, B.V., Paramonova, N.V., Kuznetsov, K.: Stress responses in Nicotiana sylvestris L. cells to salinity and high temperature: 1-accumulation of proline, polyamines, betaines and sugars.-Sov. Plant. Physiol. Rast. 41: 558-365, 1994.Google Scholar
  94. Shevyakova, N.I., Strogonov, H.P., Kiryan I.G.: Metabolism of polyamines in NaCl-resistant cell lines from Nicotiana sylvestris.-Plant Growth Regul. 3: 365-369, 1985.Google Scholar
  95. Singh, B.K.: Amino acid biosynthesis.-In: Srivastava, H.S., Singh, R.P. (ed.): Nitrogen Nutrition in Higher Plants. Pp. 234-244. Associated Publ. Co., New Delhi 1995.Google Scholar
  96. Singh, N.K., Bracken, C.A., Hasegawa, P.M., Handa, A.K., Buckel, S., Hermodson, M.A., Pfankoch, F., Regnier, F.E., Bressan, R.A.: Charaterization of osmotin. A thaumatin-like protein associated with osmotic adjustment in plant cells.-Plant Physiol. 85: 529-536, 1987a.Google Scholar
  97. Singh, N.K., Handa, A.K., Hasegawa, P.M., Bressan, R.A.: Proteins associated with adaptation of cultured tobacco cells in NaCl.-Plant Physiol. 79: 126-137, 1985.Google Scholar
  98. Singh, N.K., LaRoge, P.C., Handa, A.R., Hasegawa, P.M., Bressan, R.A. Hormonal regulation of protein synthesis associated with salt tolerance in plant cell.-Proc. nat. Acad. Sci. USA 84: 739-743, 1987b.Google Scholar
  99. Slocum, R.D., Kaur-Sawhney, R., Galson, A.W.: The physiology and biochemistry of polyamines in plants.-Arch. Biochem. Biophys. 235: 283-303, 1984.Google Scholar
  100. Stark, C.J.: A plant biochemical regulator improves salt tolerance.-In: Jaiwal, P.K., Singh, R.P., Gulati, A. (ed.): Strategies for Improving Salt Tolerance in Higher Plants. Pp. 205-219. Oxford and IBH Publ. Co., New Delhi 1997.Google Scholar
  101. Stewart, G.R., Larher, F.: Accumulation of amino acids and related compounds in relation to environmental stress.-In: Miflin, H.J. (ed.): The Biochemistry of Plants. Pp. 609-635. Academic Press, New York 1980.Google Scholar
  102. Storey, R., Ahmad, N., Wyn Jones, R.G.: Taxonomic and ecological aspects of the distribution of glycinebetaine and related compounds in plants.-Oecologia 27: 319-322, 1977.Google Scholar
  103. Strogonov, B.P.: Physiological Basis of Salt Tolerance in Plants.-Isr. Prog. Sci. Transl., Jerusalem 1964.Google Scholar
  104. Strogonov, B.P., Shevyakova, N.I., Kabanov, V.V.: Diamines in metabolism of plants under conditions of salinization.-Sov. Plant Physiol. 19: 1098-1104, 1972.Google Scholar
  105. Tarczynski, M.C., Jensen, R.G., Bohnert, R.G.: Stress protection of transgenic tobacco by production of the osmolyte mannitol.-Science 259: 508-510, 1993.Google Scholar
  106. Tully, R.E., Hanson, A.D., Nelson, C.E.: Proline accumulation in water stressed barley leaves in relation to translocation and the nitrogen budget.-Plant Physiol. 63: 518-523, 1979.Google Scholar
  107. Venkatesan, A., Chellappan, K.P.: Accumulation of proline and glycinebetaine in Ipomoea pes-caprae induced by NaCl.-Biol. Plant. 41: 271-276, 1998.Google Scholar
  108. Weigel, P., Weretilnyk, E.A., Hanson, A.D.: Betaine aldehyde oxidation by spinach chloroplasts.-Plant Physiol. 82: 753-759, 1986.Google Scholar
  109. Weimberg, R., Lerner, H.R., Poljakoff-Mayber, A.: Changes in growth and water-soluble solute concentrations in Sorghum bicolor stressed with sodium and potassium.-Physiol. Plant. 62: 472-480, 1984.Google Scholar
  110. Wyn Jones, R.G.: An assessment of quaternary ammonium and related compounds as osmotic effectors in crop plants.-In: Rains, D.W., Valentine, R.C., Hollaender, A. (ed.): Genetic Engineering of Osmoregulation. Pp. 155-170. Plenum Press, New York 1980.Google Scholar
  111. Wyn Jones, R.G.: Salt tolerance.-In: Johnson, C.B. (ed.): Physiological Processes Limiting Plant Productivity. Pp. 271-292. Butterworth, London 1981.Google Scholar
  112. Wyn Jones, R.G.: Phytochemical aspects of osmotic adaptation.-In: Timmermann, B.N., Steelink, C., Loewus, F.A. (ed.): Recent Advances in Phytochemistry. Vol. 13. Phytochemical Adaptations to Stresses. Pp. 55-78. Plenum Press, New York 1984.Google Scholar
  113. Wyn Jones, R.G., Gorham, J., McDonnell, E.: Organic and inorganic solute contents in the Triticeae.-In: Staples, R.G., Toenniessen, G.H. (ed.): Salinity Tolerance in Plants. Pp. 189-203. Wiley, New York 1984.Google Scholar
  114. Wyn Jones, R.G., Storey, R.: Betaines.-In: Paleg, L.G., Aspinall, A. (ed.): The Physiology and Biochemistry of Drought Resistance in Plants. Pp. 171-204. Academic Press, Sydney 1981.Google Scholar
  115. Yancey, P.H., Clark, M.B., Hand, S.C., Bowlus, R.D., Somero, G.N.: Living with water stress: evaluation of osmolyte systems.-Science 217: 1214-1222, 1982.Google Scholar
  116. Zhao, Y., Aspinall, D., Paleg, L.G.: Protection of membrane integrity in Medicago sativa L. by glycinebetaine against the effects of freezing.-J. Plant Physiol. 140: 541-543, 1992.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  1. 1.Department of Botany, Faculty of ScienceAin Shams UniversityCairoEgypt e-mail

Personalised recommendations