Skip to main content
Log in

Osmotic Stress Increases Alcohol Dehydrogenase Activity in Maize Seedlings

  • Published:
Biologia Plantarum

Abstract

Maize (Zea mays L.) seedlings were exposed to osmotic stress, and alcohol dehydrogenase (ADH) activity and abscisic acid (ABA) concentration were determined. The osmotic stress increased ADH activities in both roots and shoots, whereas the increase was 2-fold greater in roots than the shoots. The stress also increased ABA concentration in both roots and shoots and the increase was greater in the roots than in the shoots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248-254, 1976.

    Google Scholar 

  • Conley, T.R, Peng, H.-P., Shih M.-C.: Mutations affecting induction of glycolytic and fermentative genes during germination and environmental stresses in Arabidopsis.-Plant Physiol. 119: 599-607, 1999.

    Google Scholar 

  • De Bruxelles, G.L., Peacock, W.J., Dennis, E.S., Dolferus, R.: Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis.-Plant Physiol. 111: 381-391, 1996.

    Google Scholar 

  • Dolferus, R., Ellis, M., de Bruxelles, G., Trevaskis, B., Hoeren, F., Dennis, E.S., Peacock, W.J.: Strategies of gene action in Arabidopsis during hypoxia.-Ann. Bot. 79(Suppl.): 21-31. 1997.

    Google Scholar 

  • Drew, M.C.: Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia.-Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 223-250, 1997.

    Google Scholar 

  • Hanson, A.D., Jacobsen, J.V., Zwar, J.A.: Regulated expression of three alcohol dehydrogenase genes in barley aleurone layers.-Plant Physiol. 75: 573-581, 1984.

    Google Scholar 

  • Jarillo, J.A., Leyva, A., Salinas, J., Martínez-Zapater, J.M.: Low temperature induces the accumulation of alcohol dehydrogenase mRNA in Arabidopsis thaliana, a chilling-tolerant plant.-Plant Physiol. 101: 833-837, 1993.

    Google Scholar 

  • Kato-Noguchi, H., Watada, A.E.: Effects of low-oxygen atmosphere on ethanolic fermentation in fresh-cut carrots.-J. amer. Soc. hort. Sci. 122: 107-111, 1997.

    Google Scholar 

  • Kato-Noguchi, H.: Flooding induced increases in alcohol dehydrogenase acivity in timothy and ryegrass seedlings.-Biol. Plant. 42: 445-449, 1999.

    Google Scholar 

  • Kennedy, R.A., Rumpho, M.E., Fox, T.C.: Anaerobic metabolism in plants.-Plant Physiol. 100: 1-6, 1992.

    Google Scholar 

  • Ricard, B., Couée, I., Raymond, P., Saglio, P.H., Saint-Ges, V., Pradet, A.: Plant metabolism under hypoxia and anoxia. Plant Physiol. Biochem. 32: 1-10, 1994.

    Google Scholar 

  • Sánchez-Serrano, J.J., Amati, S., Ebneth, M., Hildmann, T., Mertens, R., Pena-Cortés, H., Prat, S., Willmitzer, L.: The involvement of ABA in wound responses of plants.-In: Davies, W.J., Jones, H.G., (ed.): Abscisic Acid, Physiology and Biochemistry. Pp. 210-216. Bios Scientific Publishers, Oxford 1991.

    Google Scholar 

  • Walker-Simmons, M.: ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars.-Plant Physiol. 84: 61-66, 1987.

    Google Scholar 

  • Zeevaart, J.A.D., Creelman, R.A.: Metabolism and physiology of abscisic acid.-Annu. Rev. Plant Physiol. Plant mol. Biol. 39: 439-473. 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kato-Noguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato-Noguchi, H. Osmotic Stress Increases Alcohol Dehydrogenase Activity in Maize Seedlings. Biologia Plantarum 43, 621–624 (2000). https://doi.org/10.1023/A:1002864318871

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002864318871

Navigation