Skip to main content
Log in

Long–Pulse Explosive Compaction of a Diamond Powder

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

The problem of producing bulk specimens by explosive compaction of a synthetic diamond powder without binders and catalytic additions is considered. The method of long–pulse explosive compaction with the use of multilayered explosive charges with a total mass up to 760 kg is used in experiments. The physicochemical properties of the resulting compacts are studied in detail. It is shown that, for relatively low loading pressures, long–pulse explosive compaction makes it possible to produce specimens whose hardness is equal to that usually obtained under higher (by one order of magnitude) shock pressures with a pulse duration of ≈1 μsec. In contrast to short–pulse loading, long–pulse loading ensures a considerable decrease in the cracking of the compacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Akashi and A. Sawaoka, “Shock consolidation of diamond powders,” J. Mater. Sci., 22, 3276–3286 (1987).

    Google Scholar 

  2. D. K. Potter, and T. J. Ahrens, “Dynamic consolidation of diamond powders into polycrystalline diamond,” Appl. Phys. Lett., 51, No. 5, 317–319 (1987).

    Google Scholar 

  3. S. Sawai and K. Kondo, “Characterization of the grain boundary in shock-compacted diamond,” J. Amer. Ceram. Soc., 71, No. 4, 185–188 (1988).

    Google Scholar 

  4. K. Kondo and S. Sawai, “Fabricating nanocrystalline diamond ceramics by a shock compaction method,” J. Amer. Ceram. Soc., 73, No. 7, 1983–1991 (1990).

    Google Scholar 

  5. D. K. Potter and T. J. Ahrens, “Shock consolidation of diamond and graphite mixtures to fused polycrystalline diamond,” J. Appl. Phys., 63, No. 3, 910–914 (1988).

    Google Scholar 

  6. S. Sawai and K. Kondo, “Essential factors for shock compaction of diamond composites,” J. Amer. Ceram. Soc., 73, No. 8, 2428–2434 (1990).

    Google Scholar 

  7. A. Sawaoka and T. Akashi, “High density compacts at high hardness materials,” U.S. Patent Nos. 4.655.830 and 4.695.321 (1987).

  8. N. V. Novikov, A. L. Maistrenko, V. I. Trefilov, and V. Kovtun, “Structure and properties of shock-wave sintered diamond composites,” Ind. Diamonds Rev., No. 5, 278–281 (1993).

    Google Scholar 

  9. Shi-Shian Shang, K. Hokamoto, and M. A. Meyers, “Hot dynamic consolidation of hard ceramics,” J. Mater. Sci., 27, 5470–5476 (1992).

    Google Scholar 

  10. S. S. Batsanov, V. A. Vazyulin, L. I. Kopaneva et al., “Shock pressing of a diamond powder,” Fiz. Goreniya Vzryva, 27, No. 4, 139 (1991).

    Google Scholar 

  11. V. S. Joshi, P.-A. Persson, and N. N. Thadhani, “Effect of impurities on transient heat conduction in shock compaction of diamond powders,” in: Proc. of the EXPLOMET'95 Int. Conf. (El Paso, TX, 1995), Elsevier, Netherlands (1995), pp. 37–44.

    Google Scholar 

  12. E. E. Lin, V. A. Medvedkin, and S. A. Novikov, “Compaction of ultradisperse diamonds by weak shock wave,” ibid, Elsevier, Netherlands (1995), pp. 89–92.

    Google Scholar 

  13. D. Raybould, “The properties of stainless steel compacted dynamically to produce cold interparticle welding,” J. Mater. Sci., 16, No. 3, 589–598 (1981).

    Google Scholar 

  14. A. Ferreira and M. A. Meyers, “Method for determining pressure required for shock compaction of powders,” in: M. Meyers, L. Murr, and K. P. Staudhammer (eds.), Proc. of the EXPLOMET'90 Int. Conf., 1990, Marcel Deccer, New York (1992), pp. 361–370.

    Google Scholar 

  15. A. A. Deribas, “The problem of obtaining dense and strong compacts in explosive loading of powders,” in: Proc. of the EXPLOMET'95 Int. Conf. (El Paso, TX, 1995), Elsevier, Netherlands (1995), pp. 23–28.

    Google Scholar 

  16. A. A. Shtertser, “Cold-welding model of dynamic consolidation of solids,” ibid, Elsevier, Netherlands (1995), pp. 133–138.

    Google Scholar 

  17. A. A. Shtertser, “Possible seizure mechanism of solids,” Trenie Iznos, 16, No. 4, 745–751 (1995).

    Google Scholar 

  18. A. A. Shtertser, “Welding wave on the contact spot of solids,” Tribol. Int., 31, No. 4, 169–174 (1998).

    Google Scholar 

  19. Yu. L. Krasulin, Interaction of a Metal with a Semiconductor in the Solid Phase [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  20. A. A. Shtertser, “Rotational components of deformation in metal bodies under dynamic loading,” Fiz. Goreniya Vzryva, 34, No. 2, 129–133 (1998).

    Google Scholar 

  21. A. N. Dremin et al., “Detonation of industrial highexplosives,” Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (1971).

  22. A. A. Deribas, Physics of Hardening and Explosion Welding [in Russian], Nauka, Novosibirsk (1981).

    Google Scholar 

  23. V. A. Kuznetsov, A. I. Chuvilin, Yu. V. Butenko, et al., “Closed curved graphite-like structures formation on micron-size diamond,” Chem. Phys. Lett., 289, 353–360 (1998).

    Google Scholar 

  24. D. S. Dolgushin, V. F. Anisichkin, and V. F. Komarov, “Shock densification of ultradispersed diamond,” Fiz. Goreniya Vzryva, 35, No. 3, 143–145 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deribas, A.A., Simonov, P.A., Filimonenko, V.N. et al. Long–Pulse Explosive Compaction of a Diamond Powder. Combustion, Explosion, and Shock Waves 36, 758–770 (2000). https://doi.org/10.1023/A:1002858823944

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002858823944

Keywords

Navigation