Skip to main content
Log in

Discoveries in Detonation of Molecular Condensed Explosives in the 20th Century

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

A number of experimental results that could not be satisfactorily explained within the framework of the Grib—Zel'dovich—Neumann—Döring detonation theory are reviewed, namely, the oscillating detonation of some liquid high explosives (HE), the weak dependence of the time of detonation transformation of heterogeneous charges on their structure (particle size, liquid or solid state, etc.) with a strong dependence of the critical diameter of detonation on the structure, and the extremely weak dependence of the detonation rate of liquid HE on the charge diameter with a significant value of the critical diameter of detonation. These studies yielded the following results: 1) for each heterogeneous HE, a typical shock–wave pressure p * and a typical initial density ρ0 * were found, such that, for their low values, HE transformation follows the mechanism of hot points (depends on the charge structure), and for high values of these parameters, HE transformation obeys the homogeneous mechanism (does not depend on the charge structure); 2) two new theoretical notions were discovered and used in the detonation theory: the phenomenon of breakdown of the chemical reaction in the shock–wave front by rarefaction waves and the notion of a “shock jump,” which reflects the specific character of action of shock waves on complex multiatomic molecules of condensed HE. It was also shown that the discovery of the parameters p * and ρ0 * and the breakdown and “shock jump” phenomena allowed one to confirm experimentally the explanations of the above observations, which are incompatible with the Grib—Zel'dovich—Neumann—Döring detonation theory, to propose the structure of the front of detonation waves both in homogeneous (stable and oscillating) and heterogeneous HE whose basic property is HE transformation (partial or complete depending on the HE power and initial density) already in the shock–wave front, and to proposed principally new ideas on the nature of the critical diameter of detonation of homogeneous and heterogeneous HE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Mallard and H. L. Le Chatelier, “Recherches experimentales et théoriques sur la combustion des melanges gazeux explosifs-memoire i, temperature d'inammation des melanges gazeux,” Ann. Mines, 4, No. 8, 274–295 (1883).

    Google Scholar 

  2. M. Berthelot and P. Vieille, “L'oude explosive,” Ann. Chem. Phys., 28, No. 5, 283–332 (1883).

    Google Scholar 

  3. V. A. Michelson, “Normal ignition rate of explosive gas mixtures,” in: Scientific Papers of the Imperial Moscow University in Mathematics and Physics [in Russian], Vol. 10 (1893), pp. 1–93.

    Google Scholar 

  4. D. L. Chapman, “On the rate of explosions in gases,” Phil. Mag., 47, 90–104 (1899).

    Google Scholar 

  5. E. Jouguet, “On the propagation of chemical reaction in gases,” J. Math. Pures Appl., 7, 347–425 (1905); 2, 5–86 (1906).

    Google Scholar 

  6. A. A. Grib, “Hydrodynamic theory of explosive waves,” Candidate's Dissertation in Phys-Math. Sci., Tomsk Univ. (1940); Prikl. Mekh. Mat., 8, No. 4, 273 (1944).

    Google Scholar 

  7. Ya. B. Zel'dovich, “Theory of propagation of detonation in gas systems,” Zh. Éxp. Teor. Fiz., 10, No. 5, 542–568 (1940).

    Google Scholar 

  8. J. von Neumann, “Theory of DetonationWaves (OD-02),” Technical Report, National Defense Research Committee of the Office of Scientific Research and Development, Division B, Section B-1, Serial No. 238 (1942).

  9. W. Döring, “Uber der detonation vergang in gasen,” Ann. Phys., 43, No. 5, 421–436 (1943).

    Google Scholar 

  10. E. N. Aleksandrov, V. A. Veretennikov, A. N. Dremin, and K. K. Shvedov, “Mechanism of detonation of porous HE,” Fiz. Goreniya Vzryva, 3, No. 4, 471–484 (1967).

    Google Scholar 

  11. K. K. Shvedov and S. A. Koldunov, Effect of the Physical State and Charge Structure on the Time of Their Response upon Detonation [in Russian], Nauka, Moscow (1972), pp. 439–443.

    Google Scholar 

  12. V. O. Rosing and Yu. B. Khariton, “HE detonation with small charge diameters,” Dokl. Akad. Nauk SSSR, 26, No. 4, 360–361 (1940).

    Google Scholar 

  13. H. Eyring, R. E. Powell, G. H. Duffet, and R. B. Paril, “The stability of detonation,” Chem. Rev., 45, 69–181 (1949).

    Google Scholar 

  14. L. V. Dubnov, “Problem of losses in a detonation wave,” Zh. Fiz. Khim., 34, 2367 (1960).

    Google Scholar 

  15. M. W. Evans, “Detonation sensitivity and failure diameter in homogeneous condensed materials,” J. Chem. Phys., 36, 193–200 (1962).

    Google Scholar 

  16. G. G. Rempel, “Estimation of the width of the chemical reaction zone in detonation waves,” Vzryv. Delo, 52, No. 9, 39–56 (1963).

    Google Scholar 

  17. A. N. Dremin, S. D. Savrov, V. S. Trofimov, and K. K. Shvedov, Detonation Waves in Condensed Media [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  18. A. N. Dremin, “On condensed explosives detonation decomposition mechanism,” in: Proc. of the Symp. (Int.) on High Dynamic Pressure, Paris (1978), pp. 175–182.

  19. A. N. Dremin and K. K. Shvedov, “On shock wave explosive decomposition,” in: Proc. of the 6th Symp. (Int.) on Detonation, San Diego, Aug. 24–27 (1976), pp. 29–35.

  20. A. N. Dremin, Toward Detonation Theory, Springer, New York (1999).

    Google Scholar 

  21. A. N. Dremin and V. S. Trofimov, “Structure of the front of nonideal detonation in solid HE,” Fiz. Goreniya Vzryva, 7, No. 3, 427–428 (1971).

    Google Scholar 

  22. K. M. Mikha'lyuk and V. S. Trofimov, “Possible gasdynamic limit of propagation of steady detonation,” Fiz. Goreniya Vzryva, 13, No. 4, 606–613 (1977).

    Google Scholar 

  23. I. F. Kobylkin and V. S. Solov'ev, “Equation of the shape of the nonideal detonation wave front and the ow structure inside the chemical reaction zone,” in: Mechanics of Pulsed Processes [in Russian], Bauman Tech. Univ. (1985), pp. 55–66.

  24. K. I. Shchelkin and Ya. K. Troshin, Combustion Gas Dynamics [in Russian], Izd. Akad. Nauk SSSR, Moscow (1963).

    Google Scholar 

  25. A. N. Dremin, G. A. Adadurov, and O. K. Rozanov, “Detonation of nitromethane near the limit,” Dokl. Akad. Nauk SSSR, 133, No. 6, 1372–1374 (1960).

    Google Scholar 

  26. A. N. Dremin and O. K. Rozanov, “Detonation of nitromethane-acetone mixtures,” Dokl. Akad. Nauk SSSR, 139, No. 1, 137–139 (1961).

    Google Scholar 

  27. K. I. Shchelkin, “Two types of unstable combustion,” Zh. Éxp. Teor. Fiz., 36, 600–606 (1959).

    Google Scholar 

  28. V. V. Voitsekhovskii, V. V. Mitrofanov, and M. E. Topchiyan, Detonation Front Structure in Gases [in Russian], Izd. Sib. Div. Akad. Nauk SSSR, Novosibirsk (1963).

    Google Scholar 

  29. R. I. Soloukhin, Shock Waves and Detonation in Gases [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

  30. K. I. Shchelkin, Detonation [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  31. A. N. Dremin, “Critical diameter of detonation of liquid HE,” Dokl. Akad. Nauk SSSR, 147, 870–873 (1962).

    Google Scholar 

  32. A. N. Dremin and S. D. Savrov, “Limiting conditions of stable propagation of stable detonation of liquid HE,” Fiz. Goreniya Vzryva, No. 4, 75 (1966).

  33. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  34. S. A. Koldunov, “Effect of density on transitional processes with shock-wave initiation,” in: Shock Waves in Condensed Media [in Russian], St. Petersburg (1998), p. 93.

  35. A. N. Dremin, V. Yu. Klimenko, O. N. Davidova, and T. A. Zoludeva, “Multiprocess detonation model,” in: Proc. of the 9th Symp. (Int.) on Detonation, Portland, Oregon, Aug. 28-Sept. 1 (1989), pp. 725–728.

  36. A. N. Dremin and L. V. Babare, Shock Waves in Condensed Matter, Am. Inst. of Phys., New York (1981), pp. 363–381.

    Google Scholar 

  37. S. Block, C. E. Weir, and P. J. Piermarini, “Polymorphism in benzene, naphthalene and anthracene at high pressure,” Science, 169, 586–587 (1970).

    Google Scholar 

  38. V. K. Ashaev, G. S. Doronin, and A. D. Levin, “Detonation front structure in condensed high explosives,” Fiz. Goreniya Vzryva, 24, No. 1, 95–99 (1988).

    Google Scholar 

  39. S. V. Pershin and A. V. Utkin, “Evolution of the pro-file of the steady zone of the detonation wave with increasing initial density of 2' 2' 2'-trinitroethyl-4; 4; 4-trinitrobutyrate,” in: Abstracts of XII Symp. on Combustion and Explosion, Chernogolovka, Sept. 11–15 (2000).

  40. A. V. Utkin, “Effect of initial density on the structure of detonation waves in heterogeneous HE,” ibid.

  41. W. Fikett, Introduction to Detonation Theory, Univ. of Calif. Press, Berkeley-Los Angeles-London (1985).

    Google Scholar 

  42. Yu. B. Zel'dovich and A. S. Kompaneets, Detonation Theory [in Russian], Gostekhizdat, Moscow (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dremin, A.N. Discoveries in Detonation of Molecular Condensed Explosives in the 20th Century. Combustion, Explosion, and Shock Waves 36, 704–715 (2000). https://doi.org/10.1023/A:1002846521218

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002846521218

Keywords

Navigation