Advertisement

Applied Biochemistry and Microbiology

, Volume 37, Issue 1, pp 1–13 | Cite as

Structures and Functions of Chaperones and Chaperonins (Review)

  • Z. G. Evstigneeva
  • N. A. Solov'eva
  • L. I. Sidel'nikova
Article

Abstract

Folding and assembling of newly synthesized proteins is directed and effected by a group of relatively recently discovered proteins called molecular chaperones. These proteins not only control the assembling of native structures; they also remodel protein molecules that have wrong conformations. All molecular chaperones perform the same function, but structurally they are divided into groups of chaperones and chaperonins. These proteins are highly conserved in evolution and display an ATPase activity. Certain known chaperones and chaperonins are shown in the table, and their structures and mechanisms of action are described.

Keywords

ATPase Activity Protein Molecule Molecular Chaperone Native Structure Wrong Conformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Las-Key, R.A., Hondg, B.M., and Finch, Y.T., Nature (London), 1978, vol. 275, no. 5679, pp. 416-420.Google Scholar
  2. 2.
    Ellis, R.J., Nature (London), 1987, vol. 328, no. 6128, pp. 378-379.Google Scholar
  3. 3.
    Hohn, N., Hohn, D., Engel, A., Wurth, M., and Smith, P.R., J. Mol. Biol., 1979, vol. 129, no. 3, pp. 359-373.Google Scholar
  4. 4.
    Gething, M.J. and Sambrook, J., Nature (London), 1992, vol. 355, no. 6355, pp. 3345-3346.Google Scholar
  5. 5.
    Poglazov, B.F., Dokl. Akad. Nauk, 1995, vol. 343, no. 3, pp. 400-402.Google Scholar
  6. 6.
    Pushkin, A.V., Tsuprun, V.L., Solovieva, N.A., Shubin, V.V., Evstigneeva, Z.G., and Kretovich, W.L., Biochim. Biophys. Acta, 1982, vol. 704, no. 2, pp. 379-384.Google Scholar
  7. 7.
    Pushkin, A.V., Tsuprun, V.L., Solov'eva, N.A., Shubin, V.V., Evstigneeva, Z.G., and Kretovich, V.L., Biokhimiya (Moscow), 1983, vol. 48, no. 9, pp. 1441-1446.Google Scholar
  8. 8.
    Hemmingsen, S.M., Woolfold, C., Vies, S.M., Tilly, R., Dennis, D.T., Georgopolus, C.P., Hendrix, R.W., and Ellis, R.J., Nature (London), 1988, vol. 333, no. 6171, pp. 330-334.Google Scholar
  9. 9.
    Golonbinoff, P., Christeller, J.T., Gatenby, A.A., and Lorimer, G.H., Nature (London), 1989, vol. 342, no. 6252, pp. 884-889.Google Scholar
  10. 10.
    Hartl, F.U., Nature (London), 1996, vol. 381, no. 6583, pp. 571-580.Google Scholar
  11. 11.
    Craig, E.A. and Gross, C.A., Trends Biochem. Sci. 1991, vol. 16, no. 1, pp. 135-140.Google Scholar
  12. 12.
    Lindquist, S., Annu. Rev. Biochem. 1986, vol. 55, pp. 1151-1191.Google Scholar
  13. 13.
    Liberek, K., Zylicz, M., Lebowitz, J.H., McMacken, R., and Georgopolus, C., Proc. Natl. Acad. Sci. USA, 1983, vol. 80, no. 21, pp. 6431-6436.Google Scholar
  14. 14.
    Liberek, K., Marzalec, J., Ang, D., Georgopolus, C., and Zylicz, M., Proc. Nat. Acad. Sci. USA, 1991, vol. 88, no. 7, pp. 2874-2878.Google Scholar
  15. 15.
    Skowyra, D., Georgopolus, C., and Zylicz, M., Cell (Cambridge, Mass), 1990, vol. 62, no. 5, pp. 939-944.Google Scholar
  16. 16.
    Beckman, R.P., Mizzen, L.A., and Welch, W.Y., Science (Washington, D.C.), 1990, vol. 248, pp. 850-854.Google Scholar
  17. 17.
    Chiang, H.L., Terlecky, S.R., Plant, C.P., and Dice, J.F., Science (Washington, D.C.), 1989, vol. 246, pp. 382-385.Google Scholar
  18. 18.
    Bole, D.G., Hendershot, L.M., and Kearney, J.F., J. Cell. Biol., 1986, vol. 102, no. 5, pp. 1558-1566.Google Scholar
  19. 19.
    Barraclough, R. and Ellis, R.J., Biochim. Biophys. Acta, 1980, vol. 608, no. 1, pp. 18-31.Google Scholar
  20. 20.
    Jacob, U. and Bacyner, J., Trends Biochem. Sci., 1994, vol. 19, no. 1, pp. 205-211.Google Scholar
  21. 21.
    Ungemann, C. and Neuperth Cyr, D.M., Science (Washington, D.C.) 1994, vol. 266, pp. 1250-1253.Google Scholar
  22. 22.
    Bardwell, J.C.A. and Graig, E.A., Proc. Natl. Acad. Sci. USA, 1984, vol. 81, no. 3, pp. 848-852.Google Scholar
  23. 23.
    Pelham, H.R.B., Rev. Cell. Biol., 1989, vol. 5, no. 1, pp. 1-23.Google Scholar
  24. 24.
    Flaherty, K.M., Deluca-Flaherty, C., and McKay, D.B., Nature (London), 1990, vol. 346, no. 6285, pp. 623-628.Google Scholar
  25. 25.
    DeLuca-Flaherty, C., Flaherty, K.M., and McIntosh, L.J., Bahrami B., McKay D.B., J. Mol. Biol., 1988, no. 5, pp. 749-750.Google Scholar
  26. 26.
    Rippmann, F., Taylor, W.R., Rothbard, J.B., and Green, N.M., EMBO J., 1991, vol. 10, no. 5, pp. 1053-1059.Google Scholar
  27. 27.
    Housley, P.R., Sanchez, E.R., Westphal, H.M., Beato, M., and Pratt, W.B., J. Biol. Chem., 1985, vol. 260, no. 25, pp. 1380-1387.Google Scholar
  28. 28.
    Sanchez, E.R., Toft, D.O., Schlesinger, M.J., and Pratt, W.B., J. Biol. Chem., 1985, vol. 260, pp. 12 398-12 401.Google Scholar
  29. 29.
    Altschuler, M. and Mascarenhas, J.P., Plant Mol. Biol. 1982, vol. 1, no. 1, pp. 103-115.Google Scholar
  30. 30.
    Chuang, S.E. and Blattner, F.R., J. Bacteriol., 1993, vol. 175, pp. 5242-5252.Google Scholar
  31. 31.
    Jacob, U., Muse, W., Eser, M., and Bardwell, J.C.A., Cell (Cambridge, Mass), 1999, vol. 96, no. 3, pp. 341-352.Google Scholar
  32. 32.
    Ellis, R.J., Phil. Trans. Biol. Sci. 1993, vol. 339, no. 1289, pp. 257-262.Google Scholar
  33. 33.
    Ellis, R.J. and Hemmingsen, S.M., Trends Biochem. Sci., 1989, vol. 14, no. 8, pp. 339-342.Google Scholar
  34. 34.
    Ellis, R.J. and Van der Vies, S.M., Annu. Rev. Biochem., 1991, vol. 60, pp. 321-347.Google Scholar
  35. 35.
    Braig, K., Otwinovski, Z., Hedge, R., Boisvert, D., Joachimiaka, A., Horwich, A.L., and Sigler, P.B., Nature (London), 1994, vol. 371, no. 6498, pp. 578-586.Google Scholar
  36. 36.
    Phipps, B.M., Hoffman, A., Stetter, K.O., and Baumeister, W., EMBO J., 1991, vol. 10, no. 7, pp. 1711-1722.Google Scholar
  37. 37.
    Trent, J.D., Nimmesgen, E., Wall, J.S., Hartl, F.U., and Horwich, A.L., Nature (London), 1991, vol. 354, no. 6359, pp. 490-493.Google Scholar
  38. 38.
    Horwich, A.L. and Wilson, K.R., Phil. Trans. Biol. Soc., 1993, vol. 339, no. 1289, pp. 313-325.Google Scholar
  39. 39.
    Phipps, B.M., Turke, D., Hegerl, R., Volker, S., Hoffman, A., Stetter, K.O., and Baumeister, W., Nature (London), 1993, vol. 361, no. 6411, pp. 475-477.Google Scholar
  40. 40.
    Yaffe, M.B., Farr, G.W., Miklos, D., Horwich, A.L., Sternlicht, M.L., and Sternlicht, H., Nature (London), 1992, vol. 358, no. 6383, pp. 245-248.Google Scholar
  41. 41.
    Gao, Y., Thomas, J.O., Chow, R.L., Lee, G.H., and Gowan, N.J., Cell (Cambridge, Mass), 1992, vol. 69, pp. 1043-1050.Google Scholar
  42. 42.
    Fredman, J., Nimmesgern, E., Ohtsuka, K., and Hartl, F.-U., Nature (London), 1994, vol. 370, no. 6484, pp. 111-117.Google Scholar
  43. 43.
    Helm, K.W., Lee, G.J., and Vierling, E., Plant Physiol. 1997, vol. 114, no. 4, pp. 1477-1485.Google Scholar
  44. 44.
    Vierling, E., Acta Physiol. Plant. 1997, vol. 19, no. 3, pp. 539-547.Google Scholar
  45. 45.
    Collada, C., Gomez, L., Casada, R., and Aragoncillo, C., Plant Physiol., 1997, vol. 115, no. 1, pp. 71-77.Google Scholar
  46. 46.
    Hirohashi, T., Bishio, K., and Nakai, V., Biochim. Biophys. Acta 1999, vol. 1429, no. 2, pp. 512-515.Google Scholar
  47. 47.
    Waters, E.R. and Vierling, E., Mol. Biol. Evolution 1991, vol. 16, no. 1, pp. 127-139.Google Scholar
  48. 48.
    Langer, T., Lu, C., Echols, H., Flangan, J., Hayer, M.K., and Hartl, F.U., Nature (London), 1992, vol. 356, no. 6371, pp. 683-689.Google Scholar
  49. 49.
    Nakasu, S. and Tomizawa, J., Proc. Natl. Acad. Sci. USA, 1992, vol. 89, no. 21, pp. 10139-10143.Google Scholar
  50. 50.
    Schneider, H.S., Berthold, J., Bauer, M.F., Dietmeier, K., Gniard, B., Brunner, M., and Neupert, W., Nature (London), 1994, vol. 371, no. 6498, pp. 768-774.Google Scholar
  51. 51.
    Rassow, J., Maarse, A.C., Krainer, E., Kubrich, M., Muller, H., Meijer, M., Craig, E.A., and Pfanner, N., J. Cell Biol., 1994, vol. 127, no. 6, pp. 1547-1556.Google Scholar
  52. 52.
    Kronidon, N.G., Oppliger, W., Bolliger, L., Hannavy, K., Glick, D.S., Shats, G., and Horst, V., Proc. Natl. Acad. Sci. USA, 1994, vol. 91, no. 26, pp. 1218-1222.Google Scholar
  53. 53.
    Westermann, B., Pripbuus, C., Neupert, W., and Schwarz, E., EMBO J., 1995, vol. 14, no. 14, pp. 3452-3460.Google Scholar
  54. 54.
    Sanders, S.L., Whitfield, K.V., Vogel, J.P., Rose, M.D., and Schekman, R.W., Cell (Cambridge, Mass), 1992, vol. 69, pp. 353-365.Google Scholar
  55. 55.
    Langer, N., Pfeifer, G., Martin, J., Baumeister, W., and Hartl, F.U., EMBO J., 1992, vol. 11, no. 13, pp. 4757-4765.Google Scholar
  56. 56.
    Chen, S., Roseman, A.M., Hunter, A.S., Wood, S.P., Burston, S.G., Ranson, N.A., Clarke, A.R., and Saibil, H.R., Nature (London), 1994, vol. 371, no. 6488, pp. 261-264.Google Scholar
  57. 57.
    Fenton, W.A., Kachi, Y., Furtak, K., and Horwich, A.L., Nature (London), 1994, vol. 371, no. 6488, pp. 614-619.Google Scholar
  58. 58.
    Horwich, A.L., Low, K.B., Fenton, W.A., Hirshfield, I.N., and Furtan, K.K., Cell (Cambridge, Mass), 1993, vol. 74, pp. 909-917.Google Scholar
  59. 59.
    Martin, J., Mayhew, M., Langer, N., and Hartl, F.U., Nature (London), 1993, vol. 366, no. 6452, pp. 228-233.Google Scholar
  60. 60.
    Weissman, J.S., Hohl, C.M., Kovalenko, J., Kashi, J., Chen, S., Braing, K., Saibil, H., Fenten, W.A., and Horwich, A.L., Cell (Cambridge, Mass), 1995, vol. 83, no. 4, pp. 577-587.Google Scholar
  61. 61.
    Mayhew, M., Dasilva, A.C.R., Martin, J., Erdjument-Bromage, H., Tempest, P., and Hartl, F.U., Nature (London), 1996, vol. 379, no. 6564, pp. 420-426.Google Scholar
  62. 62.
    Weissman, J.S., Rye, H.S., Fenton, W.A., Beechem, J.M., and Horvich, A.L., Cell (Cambridge, Mass), 1996, vol. 84, pp. 481-490.Google Scholar
  63. 63.
    Picard, D., Khursheed, B., Garabedian, M.J., Fortin, M.G., Lindqust, S., and Yamamoto, K.R., Nature (London), 1990, vol. 348, no. 6297, pp. 166-168.Google Scholar
  64. 64.
    Ferquson, E., Sternberg, P.W., and Horwitz, H.R., Nature (London), 1987, vol. 326, no. 6297, pp. 259-269.Google Scholar
  65. 65.
    Schumacher, R.J., Hurst, R., Sullivan, W.P., McMahon, N.J., Toft, D.O., and Matts, R.L., J. Biol. Chem., 1994, vol. 269, no. 13, pp. 9493-9499.Google Scholar
  66. 66.
    Melnick, J., Dul, J.L., and Argon, Y., Nature (London), 1994, vol. 370, no. 6488, pp. 373-375.Google Scholar
  67. 67.
    Forreiter, C. and Nover, L., J. Biosci., 1998, vol. 23, no. 4, pp. 287-302.Google Scholar
  68. 68.
    Li, Q.B., Haskell, D.W., and Guy, C.L., Plant Mol. Biol. 1999, vol. 39, no. 1, pp. 21-34.Google Scholar
  69. 69.
    Hirohashi, T., Nishio, K., and Nakai, M., Biochim. Biophys. Acta, 1999, vol. 1429, no. 2, pp. 512-515.Google Scholar
  70. 70.
    Guy, C.L., Haskell, D.W., and Li, Q.B., Cryobiology, 1998, vol. 36, no. 4, pp. 301-314.Google Scholar
  71. 71.
    Mogels Vang, S. and Simson, D.J., J. Plant Physiol., 1998, vol. 153, no. 1/2, pp. 1-15.Google Scholar
  72. 72.
    Holland, N., Belkind, A., and Holland, D., Plant J. 1998, vol. 13, no. 3, pp. 311-316.Google Scholar
  73. 73.
    Crookes, W.J. and Olsen, L.Y., J. Biol. Chem., 1998, vol. 273, no. 27, pp. 17236-17242.Google Scholar
  74. 74.
    Glatz, A., Vass, I., Los, D.A., and Vigh, L., Plant Physiol. Biochem., 1999, vol. 37, no. 1, pp. 1-12.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • Z. G. Evstigneeva
    • 1
  • N. A. Solov'eva
    • 1
  • L. I. Sidel'nikova
    • 1
  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations