Advertisement

Biochemistry (Moscow)

, Volume 66, Issue 2, pp 154–162 | Cite as

Macroscopic Aggregation of Tobacco Mosaic Virus Coat Protein

  • V. N. Orlov
  • A. M. Arutyunyan
  • S. V. Kust
  • E. A. Litmanovich
  • V. A. Drachev
  • E. N. Dobrov
Article

Abstract

The relationship between processes of thermal denaturation and heat-induced aggregation of tobacco mosaic virus (TMV) coat protein (CP) was studied. Judging from differential scanning calorimetry “melting” curves, TMV CP in the form of a trimer–pentamer mixture (“4S-protein”) has very low thermal stability, with a transition temperature at about 40°C. Thermally denatured TMV CP displayed high propensity for large (macroscopic) aggregate formation. TMV CP macroscopic aggregation was strongly dependent on the protein concentration and solution ionic strength. By varying phosphate buffer molarity, it was possible to merge or to separate the denaturation and aggregation processes. Using far-UV CD spectroscopy, it was found that on thermal denaturation TMV CP subunits are converted into an intermediate that retains about half of its initial α-helix content and possesses high heat stability. We suppose that this stable thermal denaturation intermediate is directly responsible for the formation of TMV CP macroscopic aggregates.

tobacco mosaic virus coat protein thermal denaturation partially folded intermediate aggregation circular dichroism differential scanning calorimetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Fink, A. L. (1998) Folding and Design, 3, R9-R23.Google Scholar
  2. 2.
    Kurganov, B. I. (1998) Biochemistry (Moscow), 63, 430–432.Google Scholar
  3. 3.
    Prusiner, S. B. (1998) Proc. Natl. Acad. Sci. USA, 95, 13363–13383.Google Scholar
  4. 4.
    Horiuchi, M., and Caughey, B. (1999) Structure, 7, R231-R240.Google Scholar
  5. 5.
    Georgalis, Y., Starikov, E. B., Hollenbach, B., Lurz, R., Schresinger, E., Saenger, W., Lehrach, H., and Wanker, E. E. (1998) Proc. Natl. Acad. Sci. USA, 95, 6118–6121.Google Scholar
  6. 6.
    Wetzel, R. (1992) in Stability of Protein Pharmaceuticals. Pt. B. In vivo Pathways of Degradation and Strategies for Protein Stabilization (Ahern, T. J., and Manning, M. C., eds.) Vol. 3, Plenum, N. Y., pp. 43–88.Google Scholar
  7. 7.
    Butler, P. J. G. (1984) J. Gen. Virol., 65, 253–279.Google Scholar
  8. 8.
    Bloomer, A. C., and Butler, P. J. G. (1986) in The Plant Viruses (van Regenmortel, M. H. V., and Fraenkel-Conrat, H., eds.) Vol. 2, Plenum, N. Y., pp. 19–57.Google Scholar
  9. 9.
    Abu-Eid, M., Kust, S. V., Makeeva, I. V., Novikov, V. K., and Dobrov, E. N. (1994) Molek. Genet. Mikrobiol. Virusol., 3, 28–32.Google Scholar
  10. 10.
    Dobrov, E. N., Abu-Eid, M. M., Solovyev, A. G., Kust, S. V., and Novikov, V. K. (1997) J. Prot. Chem., 16, 27–36.Google Scholar
  11. 11.
    Fraenkel-Conrat, H. (1957) Virology, 1, 1–4.Google Scholar
  12. 12.
    Dobrov, E. N., Kust, S. V., Yakovleva, O. A., and Tikhonenko, T. I. (1977) Biochim. Biophys. Acta, 475, 623–637.Google Scholar
  13. 13.
    Koppel, D. E. (1972) J. Chem. Phys., 57, 4814–4820.Google Scholar
  14. 14.
    Mutombo, K., Michels, B., Ott, H., Cerf, R., and Witz, J. (1992) Eur. J. Biophys., 21, 77–83.Google Scholar
  15. 15.
    Orlov, V. N., Kust, S. V., Kalmykov, P. V., Krivosheev, V. P., Dobrov, E. N., and Drachev, V. A. (1998) FEBS Lett., 433, 307–311.Google Scholar
  16. 16.
    Sanchez-Ruiz, J. M. (1992) Biophys. J., 61, 921–935.Google Scholar
  17. 17.
    Kurganov, B. I., Lyubarev, A. E., Sanchez-Ruiz, J. M., and Shnyrov, V. L. (1997) Biophys. Chem., 69, 125–135.Google Scholar
  18. 18.
    Jockusch, H. (1966) Z. Vererbungsl., 98, 344–362.Google Scholar
  19. 19.
    Jockusch, H., Koberstein, R., and Jaenicke, R. (1969) Z. Naturforsch., 24b, 613–617.Google Scholar
  20. 20.
    Greenfield, N., and Fasman, G. D. (1969) Biochemistry, 12, 1290–1299.Google Scholar
  21. 21.
    Namba, K., Pattanayek, R., and Subbs, G. (1989) J. Mol. Biol., 208, 307–325.Google Scholar
  22. 22.
    Bhyravbhatla, B., Watowich, S. J., and Caspar, D. L. D. (1998) Biophys. J., 74, 604–615.Google Scholar
  23. 23.
    Kuznetsova, I. M., Biktashev, A. G., Khaitlina, S. Yu., Vassilenko, K. S., Turoverov, K. K., and Uversky, V. N. (1999) Biophys. J., 77, 2788–2800.Google Scholar
  24. 24.
    Diaz-Avalos, R., and Caspar, D. L. D. (2000) J. Mol. Biol., 297, 67–72.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • V. N. Orlov
    • 1
  • A. M. Arutyunyan
    • 1
  • S. V. Kust
    • 1
  • E. A. Litmanovich
    • 2
  • V. A. Drachev
    • 1
  • E. N. Dobrov
    • 1
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of Polymer Sciences, School of ChemistryLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations