Skip to main content
Log in

Physical Interpretation of Explosion Welding near Its Lower Boundary

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

The paper considers existing approaches to determining conditions for the formation of a wavy profile of the joint surface of metals under explosion. Limitations of the hydrodynamic model due to neglect of the specific properties of welded bodies are discussed. Within the framework of an elastoplastic model, a new criterion of wave formation under explosion welding is proposed. The criterion is based on the assumption that the dynamic yield points of welded metals are equal upon collision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. R. Cowan, O. R. Bergmann, and A. H. Holtzman, “Mechanism of bond zone wave formation in explosion-clad metals,” Metallurg. Trans., 2, No. 11, 3145–3155 (1971).

    Google Scholar 

  2. A. A. Deribas, Physics of Explosion Hardening and Welding [in Russian], Nauka, Novosibirsk (1980).

    Google Scholar 

  3. V. M. Kudinov and I. D. Zakharenko, “Criterions for choosing explosion welding parameters,” Svar. Proizv., No. 9, 1–3 (1985).

    Google Scholar 

  4. R. H. Wittman, “The inuence of collision parameters on the strength and microstructure of an explosion welded aluminum alloy,” in: Application of Explosion Energy to the Production of Metals with New Properties, Proc of the II Int. Symp. (Marianske Lazne, CzSSR, 1973), Vol. 1, Pardubice (1973), pp. 155–168.

    Google Scholar 

  5. I. D. Zakharenko, Explosion Welding of Metals [in Russian], Navuka Tékhnika, Minsk (1990).

    Google Scholar 

  6. G. R. Abrahamson, “Residual periodic deformations of a surface acted upon by a moving jet,” Proc. of Am. Soc. Eng.-Mech.: Transl. J. Trans. ASME. J. Ser. E 28, No. 4, 45–55 (1961).

    Google Scholar 

  7. I. D. Zakharenko, “Critical regimes for explosion welding,” Fiz. Goreniya Vzryva, 8, No. 3, 422–428 (1972).

    Google Scholar 

  8. A. A. Deribas and I. D. Zakharenko, “Surface effects for oblique collisions of metal plates,” Fiz. Goreniya Vzryva, 10, No. 3, 409–421 (1974).

    Google Scholar 

  9. I. D. Zakharenko and B. S. Zlobin, “Effect of the hardness of welded materials on the location of the lower boundary of explosion welding,” Fiz. Goreniya Vzryva, 19, No. 5, 170–174 (1983).

    Google Scholar 

  10. T. Z. Blazynski (ed.), Explosive Welding, Forming and Compaction, Appl. Sci. Publ., London-New York (1983).

    Google Scholar 

  11. V. M. Kudinov and A. Ya. Koroteev, Explosion Welding in Metallurgy [in Russian], Metallurgiya, Moscow (1978).

    Google Scholar 

  12. Explosion Welding Metals Handbook, Vol. 6: Welding, Brazing and Soldering, Amer. Soc. Metals (1982).

  13. G. V. Stepanov, Elastoplastic Deformation of Materials under Pulsed Loading [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  14. V. A. Simonov, Explosion Welding Regions. Basic Parameters and Criteria [in Russian], Lavrent'ev Inst. of Hydrodynamics, Sib. Div., Russian Acad. Sci., Novosibirsk (1993).

    Google Scholar 

  15. A. Ya. Krasovskii, Physical Fundamentals of Strength [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  16. V. S. Sedykh, “Classification, estimates, and relation between the main parameters of explosion welding,” in: Explosion Welding and Properties of Welded Joints (collected scientific papers) [in Russian], Polytechnical Inst., Volgograd (1985), pp. 3–30.

    Google Scholar 

  17. V. S. Sedykh and M. P. Bondar', “Basic parameters of explosion welding and the strength characteristics of welded joints,” Svar. Proizv., No. 2, 1–5 (1963).

    Google Scholar 

  18. É. S. Karakozov, Pressure Welding of Metals [in Russian], Mashinostroenie, Moscow (1986).

    Google Scholar 

  19. V. A. Simonov, “Relation between plastic strain and collision angle for explosion welding,” Fiz. Goreniya Vzryva, 27, No. 3, 91–94 (1991).

    Google Scholar 

  20. V. A. Simonov, “Additional limitations on the explosive welding region,” Fiz. Goreniya Vzryva, 28, No. 1, 110–114 (1992).

    Google Scholar 

  21. A. Ya. Krasovskii, Brittleness of Metals at Low Temperatures [in Russian], Naukova Dumka, Kiev (1980).

    Google Scholar 

  22. V. G. Petushkov, “Strength and plasticity characteristics of some metals under high-rate extension": Author's Abstract of Candidate's Dissertation in Tech. Sci., Inst. Strength Problems, Acad. Sci. USSR, Kiev (1969).

    Google Scholar 

  23. V. G. Petushkov et al., “Mechanical properties of metals in high-rate tension,” Probl. Prochnosti, No. 7, 3–8 (1970).

    Google Scholar 

  24. G. J. Tailor, “The testing of materials at high rates of loading,” J. Inst. Civil Eng. 26, No. 8, 487–501 (1946).

    Google Scholar 

  25. A. G. Ivanov, S. A. Novikov, and V. A. Sinitsyn, “Elastoplastic waves in iron and steel under explosion loading,” Fiz. Tverd. Tela, 1, No. 5, 270–278 (1963).

    Google Scholar 

  26. F. F. Vitman and V. A. Stepanov, “Effect of strain rate on the strain resistance of metals for impact velocities of 10–103 m/sec,” in: Some Problems of the Strength of Solids [in Russian], Izd. Akad. Nauk SSSR, Moscow-Leningrad (1959), pp. 207–221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petushkov, V.G. Physical Interpretation of Explosion Welding near Its Lower Boundary. Combustion, Explosion, and Shock Waves 36, 771–776 (2000). https://doi.org/10.1023/A:1002810908014

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002810908014

Keywords

Navigation