Skip to main content
Log in

The Fundamentals of Vegetation Change - Complexity Rules

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Long-term vegetation dynamics based on paleo-pollen data display transient behaviour, often alternating in phase between predominant determinism and predominant 'turbulence', when viewed as a trajectory in a multivariate phase space. Given this, the metaphor of vegetation dynamics as a 'flowing stream', first introduced by Cooper in his classic 1926 paper entitled "The fundamentals of vegetation change", is re-examined and revealed to be not only useful, but strikingly realistic. Vegetation dynamic theory is reviewed and classic theories are found to reflect reality poorly. It is suggested that vegetation dynamics is a far from equilibrium system, and that the application of nonequilibrium thermodynamic theory is appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Allen, T.F.H. and T. B. Starr (1982). Hierarchy: perspectives for ecological complexity. The University of Chicago Press, Chicago.

    Google Scholar 

  • Anand, M. (1997). The fundamental nature of vegetation dynamics — a chaotic synthesis. Coenoses. 12: 55–62.

    Google Scholar 

  • Anand, M. and L. Orlóci (1996). Complexity in plant communities: the notion and quantification. Journal of Theoretical Biology 179: 179–186.

    Google Scholar 

  • Anand, M. and L. Orlóci (1997). Chaotic dynamics in a multispecies community. Environmental and Ecological Statistics 4: 337–344.

    Google Scholar 

  • Atlan, H. (1988). Measures of biologically meaningful complexity. In: Measures of Complexity (L. Peliti and A. Vulpiani, eds.) pp. 112–127.

  • Auger, P. M. and R. Roussarie (1994). Complex ecological models with simple dynamics: from individuals to populations. Acta Biotheoretica 42: 111–136.

    Google Scholar 

  • Bak, P. and K. Chen (1988). Self-organized criticality. Physical Reviews A 38:364–374.

    Google Scholar 

  • Bascompte, J. and R.V. Solé (1995). Rethinking complexity: modelling spatiotemporal dynamics in ecology. Trends in Ecology and Evolution. 10: 361–366.

    Google Scholar 

  • Bascompte, J. and R. V. Solé (1998). Modelling spatiotemporal dynamics in ecology. Springer-Verlag, Berlin.

    Google Scholar 

  • Belotelov, N.V., B.G. Bogatyrev, A.P. Kirilenko and S.V. Venevsky (1996). Modelling of time-dependent biome shifts under global climate changes. Ecological Modelling 87: 29–40.

    Google Scholar 

  • Bennet, K. D. (1993). Holocene forest dynamics with respect to southern Ontario. Review of Palaeobotany and Palynology. 79: 69–81.

    Google Scholar 

  • Brand, T. and V. Thomas Parker (1995). Scale and general laws of vegetation dynamics. Oikos. 73: 375–380.

    Google Scholar 

  • Bruelisauer, A. R., G. E. Bradfield and J. Maze (1996). A thermodynamic interpretation of succession. Coenoses 11: 73–76

    Google Scholar 

  • Clements F. E. (1916). Plant Succession: an analysis of the development of vegetation, Publ. No. 242 Carnegie Institution, Washington.

    Google Scholar 

  • Cooper, W. S. (1926). The fundamentals of vegetation change. Ecology 7: 391–413.

    Google Scholar 

  • Colinvaux, P. (1973). Introduction to Ecology. John Wiley and Sons, Inc. New York.

    Google Scholar 

  • Delcourt, H.R. (1979). Late Quaternary vegetation history of the eastern Highland Rim and adjacent Cumberland Plateau of Tennessee. Ecological Monographs 49: 255–280.

    Google Scholar 

  • Delcourt, H.R. and P.A. Delcourt (1983). Dynamic plant ecology: the spectrum of vegetational change in space and time. Quaternary Science Review 1: 153–175.

    Google Scholar 

  • Deutschman, D. H., S. A. Levin, C. Devine and L. A. Buttel. (1997). Scaling from Trees to Forests: Analysis of a Complex Simulation Model. Science Online (www.sciencemag.org).

  • Drury, W. H. and I. C. T. Nisbet (1973). Succession. Journal of the Arnold Arboretum of Harvard University. 54: 331–68.

    Google Scholar 

  • Egler, F. E. (1954). Vegetation science concepts. I. Initial floristic composition, a factor in oldfield development. Vegetatio. 4: 412–417.

    Google Scholar 

  • Eldrege, N. and S. J. Gould (1972). Punctuated equilibria: an alternative to phyletic gradualism. In Models of Paleobiology, T.M. Schopf (Ed.), San Francisco: Freeman, Cooper.

    Google Scholar 

  • Feller, W. (1957). An introduction to probability theory and its applications. Vol. I John Wiley & Sons, Inc., London

    Google Scholar 

  • Feynman, R. P., R. B. Leighton and M. Sands (1964). Feynman Lectures on Physics, Vol. III. Addison-Wesley Publishing Company, Inc.

  • Gleason, H. A. (1917). The structure and development of the plant association. Bulletin of the Torrey Botanical Club 44: 463–481.

    Google Scholar 

  • Gleason H. A. (1926). The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club 53: 7–26.

    Google Scholar 

  • Glenn-Lewin, D. C., R.K. Peet and T.T. Veblen (1992). Plant succession: theory and prediction. Chapman and Hall, London.

    Google Scholar 

  • Godfray, H.C.J. and S.P. Blythe (1990). Complex dynamics in multispecies communities. Philosopical Transactions of the Royal Society of London B. 330" 221–233.

    Google Scholar 

  • Green, D. G. (1994). Connectivity and the evolution of biological systems. Journal of Biological Systems. 2: 91–103.

    Google Scholar 

  • Grimm, E.C. (1993). North American Pollen Database. Illinois State Museum, Illinois, U.S.A.

    Google Scholar 

  • Hesse, M. (1963). Models and analogies in science. London, Sheed and Ward.

    Google Scholar 

  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology. 24: 417–441.

    Google Scholar 

  • Hussey, T.C. (1993). A 20,000-year history of vegetation and climate at Clear Pond, northeastern South Carolina. M.Sc. Thesis. University of Maine, Orono, Maine, USA.

    Google Scholar 

  • Kauffman, S. A. (1993). The Origins of Order. Oxford, Oxford University Press.

    Google Scholar 

  • Levins, R. (1974). The qualitative analysis of partially specified systems. Annals of the New York Academy of Science 231: 123–138.

    Google Scholar 

  • Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of Atmospheric Sciences. 20: 130–141.

    Google Scholar 

  • May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature 261: 459–467.

    Google Scholar 

  • Miles, J. (1980). Vegetation succession: past and present perceptions. in J. Cairns, editor. The Recovery Process in Damaged Ecosystems Ann Arbor Science Publishers Inc., Ann Arbor

    Google Scholar 

  • Millet, J., A. Bouchard and C. Edélin (1998). Plant succession and tree architecture. Acta Biotheoretica 46: 1–22.

    Google Scholar 

  • Morrison, D. F. (1967). Multivariate statistical methods. McGraw-Hill Book Company, New York.

    Google Scholar 

  • Nicolis, G. (1988). Self organization in nonequilibrium systems and biological complexity. Biology International 15: 22–37.

    Google Scholar 

  • Nicolis, G., and I. Prigogine (1977). Self-organization in nonequilibrium systems. John Wiley & Sons, New York.

    Google Scholar 

  • Orlóci, L. (1978). Multivariate Analysis in Vegetation Research. Dr. W. Junk. bv, the Hague.

    Google Scholar 

  • Orlóci, L. and M. Orlóci (1988). On recovery, Markov chains and canonical analysis. Ecology 69: 1260–1265.

    Google Scholar 

  • Orlóci, L., M. Anand and X.S. He (1993). Markov chain: a realistic model for temporal coenosere? Biometrie-Praximetrie 33: 7–26.

    Google Scholar 

  • Paton, R. (1992). Towards a metaphorical biology. Biology and Philosophy. 7: 279–294.

    Google Scholar 

  • Paton, R. (1997). Glue, verb and text metaphors in biology. Acta Biotheoretica. 45: 1–15.

    Google Scholar 

  • Poincaré, J.H. (1899). Les méthods nouvelles de la mécanique céleste. Vol. III. Gauthier-Villars, Paris (translation: New methods of celestial mechanics, American Institute of Physics, 1993)

    Google Scholar 

  • Prentice, I. C. (1986). Vegetation responses to past climatic variation. Vegetatio 67: 131–141.

    Google Scholar 

  • Prigogine, I. (1955). Introduction to the Thermodynamics of Irreversible Processes. Wiley & Sons, New York, NY.

    Google Scholar 

  • Prigogine, I. (1980). From Being to Becoming. Freeman & Co. San Francisco, CA.

    Google Scholar 

  • Prigogine, I. and I. Stengers (1984). Order out of chaos. Bantam Books, New York.

    Google Scholar 

  • Proccacia, I. (1988). Universal properties of dynamically complex systems: the organization of chaos. Nature 333: 618–623

    Google Scholar 

  • Ritchie, J.C. (1986). Climate change and vegetation response. Vegetatio 67:65–74.

    Google Scholar 

  • Ritchie, J. C. (1995). Current trends in studies of long-term plant community dynamics. New Phytologist. 130: 469–494.

    Google Scholar 

  • Roberts, D. W. (1987). A dynamical systems perspective on vegetation theory. Vegetatio 69: 27–33.

    Google Scholar 

  • Rosen, R. (1970). Dynamical System Theory in Biology. Wiley-Interscience, New York.

    Google Scholar 

  • Schaffer, W. M. (1985). Order and chaos in ecological systems. Ecology 66:3–106.

    Google Scholar 

  • Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophy Society 106: 467–482.

    Google Scholar 

  • Stein, D. L. (1989). Complex systems. SFI Studies in the Sciences of Complexity, Addison-Wesley, Redwood City, CA.

    Google Scholar 

  • Tzedakis, P.C. and K.D. Bennett (1995). Interglacial vegetation succession: a view from southern Europe. Quaternary Science Reviews. 14: 967–982.

    Google Scholar 

  • Van Hulst, R. (1979). On the dynamics of vegetation: Markov chains as models of succession. Vegetatio 40: 3–14.

    Google Scholar 

  • Webb, T III. (1986). Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Vegetatio 67: 75–91.

    Google Scholar 

  • Whitehead, D.R. (1981). Late-Pleistocene vegetational changes in northeastern North Carolina. Ecological Monographs 51: 451–471.

    Google Scholar 

  • Wilkins, G. R., P. A. Delcourt, H. R. Delcourt, F. W. Harrison and M. R. Turner (1991). Paleoecology of Central Kentucky since the Last Glacial Minimum. Quaternary Research 36: 224–239.

    Google Scholar 

  • Willis, D. (1995). The Sand Dollar and the Slide Rule: drawing blueprints from Nature. Addison-Wesley Publishing Company, Inc. Reading, Massachusetts.

    Google Scholar 

  • Wolf, A., J.B. Swift, H.L. Swinney and J.A. Vastano (1985). Determining Lyaponov exponents from a time series. Physica 16K: 285–317.

    Google Scholar 

  • Wolfram, S. (1984). Cellular automata as models of complexity. Nature 311: 419–424.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, M. The Fundamentals of Vegetation Change - Complexity Rules. Acta Biotheor 48, 1–14 (2000). https://doi.org/10.1023/A:1002630726523

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002630726523

Navigation